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Modal analysis of corticothalamic dynamics, electroencephalographic spectra,
and evoked potentials
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The effects of cortical boundary conditions and resulting modal aspects of continuum corticothalamic elec-
trodynamics are explored, including feedbacks. Dispersion relations, electroencephalographic spectra, and
stimulus response functions are calculated from the underlying physiology, and the effects of discrete mode
structure are determined. Conditions under which modal effects are important are obtained, along with esti-
mates of the point at which modal series can be truncated, and the limit in which only a single globally uniform
mode need be retained. It is found that for physiologically plausible parameters only the lowest cortical spatial
eigenmode together with the set of next-lowest modes can produce distinct modal structure in spectra and
response functions, and then only at frequencies where corticothalamic resonances reduce dissipation to the
point where the spatial eigenmodes are weakly damped. The continuum limit is found to be a good approxi-
mation, except at very low frequencies and, under some circumstances, near the alpha resonance. It is argued
that the major electroencephalographic rhythms result from corticothalamic feedback resonances, but that
cortical modal effects can contribute to weak substructure in the alpha resonance. This mechanism is compared
and contrasted with purely cortical and pacemaker-based alternatives and testable predictions are formulated to
enable experimental discrimination between these possibilities.
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I. INTRODUCTION

In recent work, we developed a physiologically bas
continuum model of corticothalamic electrodynamics tha
able to reproduce and unify the main features of obser
EEGs, including the discrete spectral peaks, or rhythms, s
in waking and sleeping states@1–6#. In most of these paper
we argued that the typical damping rate of cortical wave
sufficiently large that boundary conditions make little diffe
ence to their properties. However, it has long been rec
nized that, if frequency ranges exist in which damping
small, the effects of discrete eigenmode structure in the fi
cortex will be important@7,8#. Our recent work on cortico-
thalamic feedback indicates that damping is indeed we
ened by such feedback at frequencies close to the spe
rhythms, especially the alpha and beta rhythms near 10
20 Hz, respectively, in the waking state, and theta rhyt
and sleep spindles near 5 and 15 Hz, respectively, in s
@9#.

In our model, the above rhythms result from resonance
a corticothalamic feedback loop, rather than lying at the f
quencies of purely cortical eigenmodes; however, their w
damping opens the possibility that cortical eigenmode effe
may also be important near these resonances, even if
elsewhere. Hence, a key aim of this paper is to recon
these two views of the production of EEG resonances
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incorporating modal effects explicitly into our model an
determining their influence semiquantitatively. A further m
tivation for the present work is the reasonably common
servation of split-band alpha activity, displaying two discre
alpha frequencies in a single individual, typically separa
by 1–2 Hz. It is plausible that these peaks may repres
nondegenerate eigenfrequencies that happen to occur in
frequency range in which damping is weakened by corti
thalamic feedback effects. By unifying treatments of cortic
thalamic feedbacks and cortical modal effects, we will det
mine the feasibility of such a mechanism and contrast it w
other possible explanations such as the existence of mul
pacemakers or subcortical loops with different resonant
quencies.

A further motivation for our work arises from the fact th
scalp EEGs are spatially large scale because~i! the cortical
signal is spatially low-pass filtered by the effects of volum
conduction in overlying tissues@7,8,10#, ~ii ! electrodes are
relatively widely spaced in practice, leading to coarse spa
resolution,~iii ! some rhythms are intrinsically spatially ex
tended, and~iv! the least damped modes are the largest sc
ones@1,2#. In previous work we used these features to just
exploring spatially uniform, or global, cortical dynamics as
first approximation to the overall cerebral electrodynam
@2#. Here we extend these ideas to the corticothalamic sys
and explore how many modes are needed to represen
dynamics well enough to predict spectra and the potent
evoked by discrete stimuli@4#.

Recent work has showed that some seizure EEGs h
simple structures that imply that the underlying dynamics
low dimensional@11#, possibly following a strange attracto
or limit cycle in a relatively simple parameter space. The
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©2001 The American Physical Society09-1



r

ro
te
o

a
th
os
in
f
IV
ci
.
ad
ls
g

, e
es
b

ee

u
ys
te
u
In
i

-

F

ials

ith

of

t
e
to

hat
em

ROBINSON, LOXLEY, O’CONNOR, AND RENNIE PHYSICAL REVIEW E63 041909
has also been considerable interest in possible nonlinea
pects of the alpha rhythm@12#. By verifying the dominance
of a few low-order modes, the analysis carried out here p
vides a natural and systematic means of obtaining trunca
low-dimensional systems of equations with the potential
reproducing the nonlinear dynamics of seizures.

In Sec. II we briefly review and generalize the corticoth
lamic model developed in our previous work, including bo
intracortical and corticothalamic feedbacks. We then imp
boundary conditions and expand the resulting equations
series of spatial eigenmodes in Sec. III and find equations
the time evolution of the expansion coefficients. Section
is concerned with modal predictions for spectra and the
cumstances under which modal effects are important
similar discussion of response functions applicable to ste
state evoked potentials and evoked response potentia
presented in Sec. V. In Sec. VI we critically discuss a ran
of mechanisms for the production of spectral resonances
pecially split-band alpha rhythms, including new possibiliti
implied by the results obtained here, and formulate testa
predictions to enable experiments to discriminate betw
them.

II. THEORY

In this section we outline the main relevant results of o
neurophysical continuum model of the corticothalamic s
tem, and its predictions of EEG spectra and evoked po
tials @5#, generalizing them where relevant. Readers sho
see Ref.@5# for further details and additional references.
this section we consider the case of an infinite cortex
which boundary conditions play no role.

A. Basic model

The mean firing rates~or pulse densities! Qa of excitatory
(a5e) and inhibitory (a5 i ) neurons are approximately re
lated to the cell-body potentialsVa by

Qa~r ,t !5S@Va~r ,t !#, ~1!

where the sigmoidal functionS increases monotonically
from 0 to a maximumQa

max asVa increases from2` to `.
Two such forms ofS used below are

S1~Va!5
Qa

max

11exp~2pz/A3!
, ~2!

S2~Va!5Qa
maxz211~z211!1/2

2z
, ~3!

z5~Va2ua!/sa , ~4!

whereua is the mean threshold of neurons,sa is the standard
deviation of this threshold,Qa

max is the maximum firing rate,
and S(ua)5Qa

max/2. The coordinater in ~1! refers to posi-
tion on the cortex, modeled as a two-dimensional sheet.
later reference, the inverses of~2! and ~3! are
04190
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S1
21~y!5ua1

saA3

p
lnS y/Qa

max

12y/Qa
maxD , ~5!

S2
21~y!5ua1sa

y

Qa
max

2
1

2

y

Qa
maxS 12

y

Qa
maxD . ~6!

The potentialVa can be written@5#

Va~r ,t !5E
2`

`

L~ t2t8!Pa~r ,t8!dt8, ~7!

L~u!5a2ue2auQ~u!, ~8!

wherePa is the mean potential generated by action potent
arriving from other neurons,Q is the unit step function, and
a is a rate constant. Hence,

DaVa5Pa , ~9!

Da5
1

a2

d2

dt2
1

2

a

d

dt
11. ~10!

The Fourier transform ofL(u), is

L~v!5~12 iv/a!22, ~11!

which implies that the dendrites act as a low-pass filter w
cutoff frequencya.

The potentialPa comprises contributionsfe,i from other
cortical neurons, and subcortical inputsfs :

Pa5Naesefe1Naisif i1Nasssfs . ~12!

Here,Nab is the mean number of couplings from neurons
type b5e,i ,s to those of typea, and sb is the size of the
response to a unit signal from neurons of typeb.

The fieldfa of outgoing pulses propagates atv55 –10 m
s21 and obeys the damped wave equation

Dafa~r ,t !5Qa~r ,t !, ~13!

Da5
1

ga
2 F ]2

]t2 12ga

]

]t
1ga

22v2
“

2G , ~14!

wherega5v/r a and r a is the range of axonsa.
Our model incorporated corticothalamic~CT! feedback

@13–16#, by assuming thatfs is the sum of a non-CT par
fN and a feedbackfT , which originates where part of th
excitatory fieldfe projects to the thalamus, then returns
the cortex. This adds a propagation time delayt0 andn'1
extra stages of dendritic filtering with rate constanth'a.
Our previous work showed that the approximationn51 was
adequate, and we assume it henceforth@5#. We also allowed
for the possibility of both direct feedback, and feedbacks t
emphasize changes in cortical signals by differentiating th
in the loop. These features yield
9-2
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MODAL ANALYSIS OF CORTICOTHALAMIC DYNAMICS, . . . PHYSICAL REVIEW E 63 041909
DafT~r ,t !5
Gee

Ges
E

0

`

dt0E dDr 8Fc~r ,r 8,t0!

1c8~r ,r 8,t0!t0

]

]t Gfe~r 8,t2t0!, ~15!

where the prefactor on the right is separated out to simp
later algebra, andc and c8 measure the strengths of dire
and differential feedbacks. Equation~15! generalizes our ear
lier results by including possible dependences of the fe
back onr , r 8, andt0, whereas these were previously treat
as being spatially constant and delta function in time@5#.
More generally, there are likely to be relatively slow depe
dences ofc andc8 on t itself—in changing between state
of arousal, for example—but we ignore these here, sim
adopting the appropriate values for the given state.

Local intracortical feedbacks are also possible. Previ
analysis showed that a broad class of such feedbacks ca
written @3#

Dxy
j @x~r ,t !2x(0)#5xxy@y~r ,t !2y(0)#, ~16!

Dxy5
1

hxy

d

dt
11, ~17!

wherehxy is a time constant,j is a small non-negative inte
ger,xxy is the linear susceptibility of a quantityx to changes
in another quantityy (xxy could more generally be position
dependent and/or nonlinear!, x is a feedback-dependent var
able with steady-state valuex(0), and y is a variable of
steady-state valuey(0) that drives the feedback. Typically
x5sb or ua and y5fe or Ve . We found that the resulting
wave dispersion relations fell into only four distinct class
greatly simplifying their analysis@3#. In places below we use
feedback offe on se as an illustrative example, for whic
the relevant feedback equation can be written@4#

Dsf@sb~r ,t !2sb
(0)#5xsf@fe~r ,t !2fe

(0)#. ~18!

B. Steady states

Upon setting all the spatial and temporal derivatives
zero in~1!–~18!, these equations determine the steady sta
of cortical activation, when the cortex is driven by a co
stant, spatially uniform non-CT stimulusfN . By analogy
with Ref. @2#, one finds

S21~fe!5@Neese~11c!1Neisi #fe1NesssfN , ~19!

in the steady state.
The structure of the solutions of~19! is easily seen in the

case in whichxsV50, implying sb5sb
(0) . In this case, the

left-hand side of~19! is monotonic increasing with a down
ward curvature forfe,Qe

max/2 and upward curvature fo
largerfe , as illustrated in Fig. 1, while the right-hand sid
of ~19! is linear infe . Hence, either one or three solution
exist @2#. When three solutions are found, the middle o
04190
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represents an unstable equilibrium, the lower correspond
normal activity, and the upper to a high firing rate seizurel
state@2#.

If xsfÞ0, the form of the right-hand side of~19! is modi-
fied by the replacement

sb5sb
(0)1xsf@fe2fe

(0)#. ~20!

Equation~20! yields a quadratic form for the right-hand sid
of ~19!, as illustrated in Fig. 1. IfS5S2, the steady state
equation~19! becomes a quartic infe . The topology of the
loci of the left-hand and right-hand sides of~19! in this case
is such that an odd number of solutions must occur betw
fe50 andfe5fe

max5Qe
max, a conclusion that also follows

from the requirement that stable and unstable steady s
alternate, with stable ones at both ends of the sequence@2#.
Hence, at least one of the four roots lies outside the phys
range, and at least one lies in it. The result that either 1 o
roots lie in the physical range can be assumed to apply to
other forms of S that incorporate robust features of th
physics—further roots might be possible ifS had a specially
chosen form, but would not be robust~although they might
correspond to pathological states!.

The effect of increasing the external stimulusfN is to
shift the straight line and quadratic curves up in Fig.
Hence, as has been discussed previously@2#, there should be
one low-fe root at very low~or perhaps negative! fN , with
two more roots appearing at intermediatefN , and a single
high-fe root at very highfN .

C. Linear waves

Small perturbations relative to the steady states of
previous subsection obey a linear wave equation. For c
stant c and c8, with a single value oft0 and a thalamic

FIG. 1. Determination of steady states. Solid and broken li
show schematic forms of left-hand and right-hand sides of~19!,
respectively, in cases with three roots, with the dotted line forxsf

50, the dashed line forxsf.0, and the dotted–dashed line fo
xsf,0. In drawing this figure it is assumed thatNeese(11f)
1Neisi.0 is satisfied, so that the straight line has a positive slo
9-3
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ROBINSON, LOXLEY, O’CONNOR, AND RENNIE PHYSICAL REVIEW E63 041909
dendritic rate constant equal toa, this yields the transfer
functions@3,5#

fe~k,v!

fN~k,v!
5GesL~v!FuV$~De2Fuf!@12Gii L~v!#FsV

2Gee@11C~v!t~v!#L~v!FsfFuV%21 ~21!

5
GesL~v!FuV

@12Gii L~v!#FsV

1

k2r e
21q2~v!r e

2 , ~22!

De~k,v!5k2r e
21~12 iv/ge!

2, ~23!

C5c2 ivt0c8, ~24!

t~v!5
eivt0

~12 iv/a!2
, ~25!

Fsf511xsffe
(0)Dsf~v!/se

(0) , ~26!

FsV512NeexsVfe
(0)DsV~v!L~v!, ~27!

Fuf52rexufDuf~v!, ~28!

FuV512xuVDuV~v!, ~29!

Dxy~v!512 iv/hxy . ~30!

q2~v!r e
25~12 iv/ge!

22Fuf

2
Gee@11C~v!t~v!#L~v!FsfFuV

@12Gii L~v!#FsV
~31!

in Fourier space for feedbacks of excitatory quantities
excitatory ones, with analogous equations for inhibito
ones. In~21!, ~22!, and~31! the gainsGab5raNabsb express
the response of neuronsa to a unit signal from neuronsb.
The parameterra5dQa

(0)/dVa is evaluated in the stead
state whereQa

(0)55210 s21!Qa
max is the steady-state firing

rate. One has

ra5
pQa

(0)

saA3
S 12

Qa
(0)

Qa
maxD , ~32!

ra5
Qa

max

2sa

~z211!1/221

z2~z211!1/2
, ~33!

for S1 andS2, respectively.
The dispersion relation of waves in our model system

given by setting the denominator of~22! to zero, giving

k21q2~v!50. ~34!

For the system to be stable,q2 must not cross the negativ
real axis@5#. We defined a stability parameter

S512
Gee~11c!

12Gii
, ~35!
04190
n

s

that must satisfyS>0 for the system to avoid instability a
v50 @5#, although further conditions must be satisfied f
stability at all frequencies. Comparison with data has show
that S!1 and that the approximationS50 can be made for
most purposes@5#.

In general, the dispersion relation~34! must be solved
numerically to obtainv in terms ofk. The special case with
C50, a@v, and no intracortical feedbacks can be solv
analytically ~along with a few other special cases!. In this
case, one finds that the system supports waves that are p
damped and nonpropagating forkre,1, but which approach
damped plane waves at largek, with

v52 ige6ge~k2r e
221!1/2, ~36!

in general@1#.
For nonzero feedbackC we previously found that wave

are least damped at even multiples ofp/t0 if c.0 and
c8/c.0 or if both these inequalities are reversed, and at o
multiples if only one is reversed, as appears to be the cas
sleep@5#. We will discuss the consequences for spectra a
instabilities in the next sections.

D. Spectra

In previous work we used the complexity of cortical in
puts to approximate fluctuations infN relative to its mean as
white noise in space and time. In calculating scalp EE
spectra we also included filtering via volume conduction
intervening tissues@5,7,8,10#, as fitted by the spatial filter
function

F~k!5e2k2/k0
2
, ~37!

where F(k) is the square of the ratio of scalp to cortic
voltage andk0'30 m21. The resulting spectrum was

P~v!5E ufe~k,v!u2F~k!d2k ~38!

5PNU L~v!

@12Gii L~v!#FsV
U2

3
Im@exp~q* 2/k0

2!E1~q* 2/k0
2!#

uq2r e
2usinu

, ~39!

PN5pufNGesFuVu2/r e
2 , ~40!

whereu5Arg(q2), ufN
2 u is the white-noise power level in

Fourier space, andE1 is the exponential integral function
@17#. This result generalizes an earlier one@5# to include
Fxy .
9-4
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The limit k0→` corresponds to the absence of volum
conduction in which case one has@5#

P~v!5PNU L~v!

@12Gii L~v!#FsV
U2 u

uq2r e
2usinu

. ~41!

Realistic values ofk0 yielded low-pass frequency filterin
with a cutoff of around 30 Hz@5#. For simplicity, we ignore
the factorF(k) from now on.

The shape of the spectrum depends strongly on the lo
of q2 in the complex plane, with instability occurring if thi
locus intersects the negative real axis. We have shown
~39! can reproduce both the peaks and the underlying s
trum seen in EEGs for physiologically reasonable values
the input parameters@5#.

If S'0, q2(0)'0, the behavior ofP(v) at smallv de-
pends on the leading terms in the expansion ofq2(v) in
powers ofv, and the effects of volume conduction can
ignored in this frequency range. This gives

q2~v!r e
25(

j 50

`

Aj~2 iv! j , ~42!

where theAj are real@5#.
Momentarily ignoring the spectral peaks and examin

the smooth, underlying spectrum forS50, one finds a small-
v regime in which@5#

P~v!'
PN

G0
2

p

2vuA1u
, ~43!

with G05(12Gii )(12NeexsVfe
(0)). If A1 is very small, this

is modified to

P~v!5
PN

G0
2

p

uA3uv3 , ~44!

andA150 defines a stability boundary@5#. At largev

P~v!5
PNpa2b2ge

2v5 . ~45!

Assumingc8/c.0, we found that the frequenciesvm of
spectral peaks are given approximately by@5#

vmt0'xm1sin21~c8xm /uCmu!sign~c!, ~46!

xm5~m21/2!p, ~47!

uCmu5~c21c82xm
2 !1/2, ~48!

with m52,4, . . . for c.0, m51,3,5, . . . for c,0, and
sign(u)50 for u50 here~the families ofm values are re-
versed ifc8/c is negative!. The positivec peaks correspond
to waking states, and negativec to sleep@5#. Alpha and beta
rhythms correspond tom52 andm54, respectively, while
theta and sleep spindles havem51 andm53.
04190
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E. Green functions and evoked potentials

An evoked response potential~ERP; also termed an even
related potential! is the transient response of the brain to
impulsive stimulus. We have argued that an ERP can
represented by the impulse response to a delta-func
input—the Green function of the system@18,19#. Closely
related to ERPs are steady state evoked potentials~SSEPs!,
which are responses to monochromatic sinusoidal inputs

In Fourier space, the Green functionG(k,v) is simply the
ratio fe /fN given by~21! or ~22!, its poles define the linea
dispersion relation, and its squared modulus yields the sp
tral power atk andv. When analyzing SSEPs, one is inte
ested in the responseG(r ,v) a distancer from an input
point. This is given by

G~r ,v!5
GesL~v!FuV

@12Gii L~v!#FsV
E d2k

~2p!2

eik•r

k2r e
21q2~v!r e

2
,

~49!

5
GesL~v!FuV

@12Gii L~v!#FsV
E

0

`

dk
kJ0~kr !

2pr e
2~k21q2!

, ~50!

5
GesL~v!FuV

@12Gii L~v!#FsV

K0@q~v!r #

2pr e
2 , ~51!

whereK0 is a Macdonald function~a modified Bessel func-
tion of the second kind! @17# and Req.0 for stable solu-
tions. This result generalizes one obtained previously
purely cortical waves andxxy50 @18#. The dominant behav-
ior of ~51! at larger is exp@2Re(qr)#, implying that wave
intensities fall off rapidly with distance unless Req is small
or, equivalently, unlessq2 lies near the negative real axis.

The time dependence of ERPs is of great interest in
plications, requiring the calculation ofG(r ,t). The Fourier
transform of~51! to the time domain cannot be evaluated
closed form in general, but is straightforward to calcula
numerically and does not lead to modal aspects beyond th
involved in G(r ,v); hence, we do not consider it furthe
here.

III. MODAL FORM OF CORTICOTHALAMIC
EQUATIONS

In this section we expand the dynamic equations fr
Sec. II in series of spatial eigenmodes with time varyi
coefficients. For definiteness, we consider only Four
modes of a one-dimensional~1D! or 2D rectangular cortex
here, since they incorporate the main physical feature of
creteness due to the imposition of boundary conditions
spherical cortex can be treated using spherical-harmo
eigenmodes with modest additional effort, while spheroi
eigenmodes are considerably more complex@8#, and the ac-
tual convoluted geometry of the cortex is amenable only
numerical treatment. Before any attempt to proceed to
full cortical geometry, our aim here is to determine the qua
tative effects produced by discrete modal structure and
find the conditions under which they become important. U
of a rectangular system in 2D enables this to be done, w
9-5
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removing some of the degeneracy implicit in a square o
while 1D systems are used in some illustrations in later s
tions.

If we consider moderate~but not necessarily linear! per-
turbations relative to a steady state withVa5Va

(0) , the Fou-
rier transform of~1! can be expanded in either of two equiv
lent series:

Qa~k,t !5S (0)d~k!1S (1)@Va~k,t !2Vad~k!#

1
S (2)

2
@Va

2~k,t !22Va
(0)Va~k,t !1Va

(0)2d~k!#

1•••, ~52!

5la
(0)d~k!1 (

n51

`

la
(n)Va

n~k,t !, ~53!

whereS (n) is thenth derivative ofS evaluated atVa
(0) and

the l (n), which arenot derivatives, are easily obtained b
comparing~55! and~56!. In Fourier space the quantityVa

2 is
expressible as the convolution

Va
2~k,t !5E dDp

~2p!D
Va~p,t !Va~k2p,t !, ~54!

in a D-dimensional system, with similar expressions f
higher-order terms. Equation~54! embodies three-wave in
teractions in which waves of wave vectorp andk2p interact
to produce a response atk. Higher order terms in the serie
~52! and ~53! represent four-wave and more complex inte
actions.

The dynamical equations~9! and ~10! are unchanged in
Fourier space, except that the arguments ofVa andPa arek
andv. Likewise, Eqs.~13!, ~16!, and~17! are only altered by
the use of Fourier arguments, providedxxy is constant, while
~14! becomes

Da5
1

ga
2 F d2

dt2
12ga

d

dt
1ga

21k2v2G . ~55!

If feedbacks on thesb are incorporated, the Fourier form o
~12! is the nonlinear equation

Pa~k,t !5E dDp

~2p!D
@Naese~p,t !fe~k2p,t !

1Naisi~p,t !f i~k2p,t !1Nasss~p,t !

3$fN~k2p,t !1fT~k2p,t !%#, ~56!

wherefs5fN1fT .
Finally, turning to the thalamic feedback equation~15!,

we note that virtually all neurons entering the cortex a
excitatory, implyingGee/Ges'Nee/Nes. If we further as-
sume a single value fort0, as in previous work, and omit thi
argument fromc andc8, Eq. ~15! becomes
04190
e,
c-
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DafT~k,t !5
Nee

Nes
E dDp

~2p!D
C~k,p!fe~2p,t2t0!,

~57!

C~k,p!5c~k,p!1c8~k,p!t0

d

dt
, ~58!

in Fourier space, wherec andc8 have each been expande
in double Fourier series inr and r 8 to obtain~56!, with

C~k,p!5E dDr dDr 8eik•reip•r8C~r ,r 8!. ~59!

In the special case in whichC(r ,r 8) depends only onr
2r 8, Eq. ~15! is a convolution and one finds

DafT~k,t !5
Nee

Nes
C~k!fe~k,t2t0!, ~60!

C~k!5c~k!1c8~k!t0

d

dt
. ~61!

When boundary conditions are imposed, the values ok
and p are restricted in our modal equations~9!, ~10!, ~13!,
~14!, ~16!, ~17!, and~52!–~61!, with

p5S 2pm

Lx
,
2pn

Ly
D , ~62!

for a 2D rectangular cortex of sizeLx3Ly , with an analo-
gous equation fork and an obvious simplification for a 1D
system. In consequence, the integrals overp are replaced by
sums over the allowed values, with

E d2p

~2p!2
→ 1

LxLy
(

m52`

`

(
n52`

`

, ~63!

in 2D. The correspondence~63! yields the power spectrum
per unit area in the 2D discrete case, which corresponds
rectly to what is calculated for continuousk.

IV. MODAL EFFECTS ON SPECTRA

There has been significant recent progress in calcula
EEG spectra from the underlying physiology. One issue t
remains contentious is whether the discrete spectral peak
due in part or whole to discrete cortical resonances wh
frequencies are set by spatial boundary conditions. Our w
has stressed the contrasting role of corticothalamic re
nances in producing discrete peaks, with resonances ind
via time delays, not spatial boundary conditions. However
frequencies where damping is small, it is possible that n
degenerate spatial eigenmodes might give rise to peak s
ting, possibly including the production of split-band alph
rhythms seen in a significant percentage of subjects.

In this section we explore the effects of discrete eige
mode structure on spectra, retaining corticothalamic fe
backC, but setting the intracortical feedback susceptibiliti
xxy50. Moreover, we neglect filtering by the skull. We d
9-6
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termine the number of modes that must be retained i
modal analysis to reproduce various features of the spe
the circumstances under which a continuum approxima
may be made, and the role of the cortical size in determin
the spectrum. In Sec. IV A we illustrate many of the essen
points using a 1D cortex, whose discrete spectrum can
evaluated in closed form, before analyzing the 2D case
Sec. IV B.

A. 1D cortex

In a 1D cortex of linear sizeLx , with periodic boundary
conditions, the power spectrum is given by

P~v!5A~v!
1

Lx
(

m52`

`
1

US 2pm

Lx
D 2

1q2U2 , ~64!

5A~v!
Im@q coth~q* Lx/2!#

2uq2uIm~q2!
, ~65!

A~v!5
ufNu2Ges

2

r e
4 U L~v!

12Gii L~v!
U2

~66!

@20#. The corresponding result in the continuum case is

P~v!5A~v!E dk

2p

1

uk21q2u2
~67!

5
A~v!

4uq2uReq
. ~68!

We require Req.0 for stability. If Re(qLx/2)*1, one
finds coth(qLx/2)'coth(q* Lx/2)'1 and the result~65! ap-
proaches~68!, implying that the system can be treated a
continuum. This corresponds to waves with Imk, which
measures the linewidth of the mode ink, exceeding the sepa
ration 2p/Lx between modes. At sufficiently high freque
cies, the condition for the continuum limit is fulfilled ifL
*2pr e , which is marginally satisfied in the human corte
according to the parameters in Table I.~Incidentally, to avoid
the physiologically wasteful phenomenon of corticocortic
fibers that wrap more than half way around the cortex, rat
than taking a shorter route,L@r e must be satisfied, which
implies that the continuum limit will also be at least margi
ally valid in other species.! If Re(qLx/2)!1, the waves are
weakly damped and one finds that the spectrum~68! is domi-
nated by a series of resonances where Im(qLx/2)5m. In this
case, one can approximate~68! by

P~v!'
A~v!Lx

4

~4pm!2uqLx22mp i u2 , ~69!

for Im q close tomp/Lx . The dispersion relation~34! then
implies that such waves satisfyk'62pm/Lx ; i.e., they are
weakly damped standing waves of the system. Such a r
nance mechanism has been discussed extensively by N
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@7,8#; the difference here is that cortical modal resonan
can only become apparent at frequencies where the cor
thalamic loop already has a resonance that leads to w
wave damping. This means that modal resonances may
to substructure in the CT resonances~e.g., the split-band al-
pha structure discussed in Sec. VI!, but not to the major
resonances at the alpha, beta, and other rhythms.

Figure 2~a! shows a series of spectra calculated for t
parameters in Table I, except thatLx is varied. Rapid con-
vergence to the continuum limit is seen forLx*2r e50.2 m,
in accord with the above discussion. The only significa
difference is that at smallLx , there is a large enhancement
the low-frequency part of the spectrum, reflecting the stro
role of the uniform (k50) mode in this case because oth
modal resonances occur at large negativeq2 for small Lx ,
with exactly resonant values satisfying

q2r e
252km

2 r e
252~2pr e /Lx!

2m2, ~70!

for the mth resonance. The low frequency enhancement
P( f ); f 22, as opposed tof 21 for the continuum limit in this
marginally stable case@see~43!#. For stable systems, bot
spectra level off asf→0, but the modal one remains en
hanced.

For modal resonance to produce discrete peaks in a
cortex, the locus ofq2 must pass near more than one of t
poles given by~70!. If many poles are comparably close
the q2 locus at a particular frequency, as is the case at la

TABLE I. Physiologically realistic values of some corticotha
lamic quantities, in the ranges used in Ref.@5#. Also included for
illustrative purposes are numerically determined values ofc andc8
appropriate to a marginally stable waking state with a strong al
peak; these have not been estimated physiologically.

Quantity Value Unit

Qe,i
max 200 s21

ue,i 15 mV
se,i 5 mV
a 100 s21

Nae 4000
Nai 600
Nas 60
se,s 1 mV s
2si 5 mV s
v 10 m s21

r e 0.1 m
r i 0.1 mm
ge 100 s21

g i 105 s21

Gee 1
Gii 21
Ges 0.5
t0 70 ms
c 1.0
c8 0.8

Lx ,Ly 0.5 m
9-7



I,

m
d,
in-

nd

ROBINSON, LOXLEY, O’CONNOR, AND RENNIE PHYSICAL REVIEW E63 041909
FIG. 2. Spectra for the parameters in Table
but various values ofLx andmmax in a 1D cortex.
In each case the solid line shows the continuu
limit, while the dotted, dashed, dotted-dashe
and triple-dotted–dashed lines correspond to
creasing values of the parameter being varied.~a!
Lx50.1, 0.3, 0.5, 0.7 m.~b! Locus of q2(v)r e

2

~same for all parameter sets in other frames a
figures!, with q2(0)50. ~c! mmax50, 1, 2, 3.~d!
Expanded view of the alpha peak in~c!.
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v, for example, the continuum limit will provide a goo
approximation and discrete modal structure will not be se
Hence, visible modal structure corresponds to cases w
'2 poles are involved. The most prominent case is predic
to correspond to them50 andm561 poles, since these lie
relatively close together and to the low frequency part of
q2 locus. Higher poles are less relevant to discrete mo
effects since they also lie on the negative realq2 axis and the
overall trend is for the imaginary part ofq2 to increase in
magnitude with frequency, as illustrated in Fig. 2~b!.

The number of modes contributing significantly to t
spectrum at a given frequency can be estimated from~67!,
with the fractional contribution from wave numbers abovek
decreasing ask23 for k*uqu. The number of strongly active
modes is thus at most a few timesuquLx /p if Req2.0. If
Req2,0, we write~67! as

P~v!5A~v!E dk

2p

1

~k21Req2!21~ Im q2!2
, ~71!

which implies that the number of active modes is of ord
2Lx Req Im q/puqu<uquLx /p, which yields the same esti
mate as for positive Req2. At high frequencies,uqu'v/v,
implying of order 2f Lx /v major modes, or;0.1f modes for
the human parameters in Table I. Hence, only a modest n
ber of modes contribute strongly to observed spectra for t
cal EEG frequencies of&50 Hz. In the frequency range o
interest, Fig. 2~b! implies that the modes of relevance exte
from m50 to a maximal value6mmax. Figure 2~c! shows
spectra calculated using variousmmax. Rapid convergence is
seen, with just three modes (mmax51) giving a good approxi-
mation up to 30 Hz, in accord with the above estimate. T
single global mode gives a reasonable representation o
spectrum up to the vicinity of the alpha frequency, althou
the alpha resonance is sharper and stronger in this app
mation than in the full calculation.
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Figure 2~d! shows an expanded view of the vicinity of th
alpha peak in Fig. 2~c!, revealing a shoulder at around 11 H
which appears atmmax51 and hardly changes for largerm.
This is due to the contribution from them50 andm561
resonances, whose poles lie atq2r e

25(0,0) and (21.6,0),
respectively, in Fig. 2~b! and are successively approached
theq2 locus asf increases past the nominal alpha frequen
Our earlier work on variations in the form of theq2 locus
with physiological changes@5# implies that it is very diffi-
cult, if not impossible, to obtain a locus that passes cl
enough to them50 and m561 poles to produce strong
peak structure in 1D without encountering an instability.
any event, if such a situation were attainable, it would
realized only in a very narrow parameter range, whereas s
alpha peaks are seen in several percent of subjects.

B. 2D cortex

It is possible to reduce the 2D discrete summation co
sponding to~38! to a single sum, giving

P~v!5
A~v!

Ly
(

n52`

` Im@qn coth~qn* Lx/2!#

2uqn
2uIm~qn

2!
, ~72!

qn
25q21~2pn/Ly!2, ~73!

but it does not appear to be possible to evaluate~72! in
closed form. Even so, the insights obtained in the 1D c
above remain valid. In particular, the continuum limit
valid for Imk*2p max$Lx

21 ,Ly
21% or, equivalently at highf,

min$Lx ,Ly%*2pre. Thus, the smallest overall dimension
the cortex governs the applicability of the 2D continuu
limit, with the 1D continuum limit being approached as th
dimension shrinks to zero, with approximately 2nmax
52mmaxLy /Lx terms needing to be retained if 2mmax terms
contribute significantly to the sum overm ~without loss of
generality, we may assumeLy<Lx). This is borne out by the
9-8
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FIG. 3. Spectra for the parameters in Table
but various values ofLx , Ly , andmmax in a 2D
cortex. In each case the solid line shows the co
tinuum limit, while the dotted, dashed, dotted
dashed, and triple-dotted–dashed lines cor
spond to increasing values of the parameter be
varied. ~a! Lx50.1, 0.3, 0.5, 0.7 m.~b! mmax

50, 1, 2, 3. ~c! Ly50.2, 0.3, 0.4, 0.5 m with
LxLy50.25 m2 fixed. ~d! Expanded view of the
alpha peak in~b!.
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results in Fig. 3~a! where rapid convergence is seen to t
continuum limit for frequencies above about 1 Hz in the ca
whereLx5Ly*0.2 m. Likewise, Fig. 3~c! shows that if the
cortical area is held constant, cases withLx'Ly have spectra
closer to the 2D continuum limit than those with very sm
Ly , which approach the 1D version forLy&0.2 m. The 1D
spectrum never differs from the 2D one by more than a f
tor of 2 in this example.

The number of strongly active modes remains restricte
2D, with the analog of~71! implying that at most a few times
uq2uLxLy/2p modes contribute strongly. This is confirmed b
the results in Fig. 3~b!, which show rapid convergence a
mmax increases beyond about 2, where modes in a circ
region of radiusmmax are included, with

~m21n2!1/2<mmax. ~74!

The number of modes required is greater than in 1D beca
of the larger high-k weighting in 2D Fourier space.

If they are weakly damped, resonant modes have

q2r e
252kmn

2 r e
252~2pr e!

2S m2

Lx
2 1

n2

Ly
2D , ~75!

for integersm andn. This form allows multiple modes with
similar kmn , leading to the possibility of multiple resonanc
at nearby frequencies. However, for these resonances to
rise to distinct peaks in the spectrum, they must not be
close together, implying thatm andn must be of order unity.
Evidence of such modal structure is seen in the alpha pea
Fig. 3, where a secondary peak lies at about 11 Hz, on
flank of the main peak at 10 Hz. The expanded view in F
3~d! shows this most clearly, demonstrating that this is due
the (m,n)5(0,0),(0,61),(61,0) modes, with little change
as mmax increases beyond 1. The reason that the pea
stronger in this case is simply the larger number of mo
with the sameuku but, as in 1D, a discrete peak is difficult o
impossible to obtain, except perhaps in a very restricted
rameter regime. It is even more difficult to produce subpe
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within the beta CT resonance because of the tendency o
q2 locus to move away from the negative real axis~where
the resonances lie! at higher frequencies. The separation b
tween the alpha subpeaks is also restricted to 1–2 H
most, since they must correspond to a relatively small arc
one of the loops in Fig. 2~b!, while a circuit of such a loop
occurs in only about 10 Hz~the alpha frequency!. We return
to these issues in Sec. VI.

V. MODAL EFFECTS ON GREEN FUNCTIONS
AND EVOKED POTENTIALS

Impulse responses of the brain, in the form of evok
response potentials, are commonly used to probe cogn
processes. Connections between prestimulus EEGs and
sequent ERPs are also widely explored, and will be treate
detail by us elsewhere. In this section, we concentrate
modal effects on the Green functionG(r ,v) of the cortico-
thalamic system, which is closely related to the steady s
evoked potential~SSEP! produced by a sinusoidally varyin
input at a frequencyv and distancer from the detecting
electrode. As in Sec. IV we begin with a 1D cortex, f
which many of the modal expressions can be evaluated
closed form, then turn to the 2D case.

A. 1D cortex

If one wishes to evaluate the steady state evoked pote
a distancex from a sinusoidally modulated point stimulu
one must evaluateG(x,v). For a real sinusoidal perturba
tion, a linear combination of the real quantities@G(x,v)
1G(x,2v)#/2 and @G(x,v)2G(x,2v)#/2i is actually
what is relevant.

The discrete 1D analog of~49! for xxy50 is @20#

G~x,v!5
GesL~v!

12Gii L~v!

1

Lx
(

m52`

`
ei2pmx/Lx

S 2pmre

Lx
D 2

1q2r e
2

~76!
9-9
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FIG. 4. Green functionsuG(x, f )u vs f for x
50.08 m and the parameters in Table I, but va
ous values ofLx , mmax, andx in a 1D cortex. In
frames~a! and ~b! the solid line shows the con
tinuum limit, while the dotted, dashed, dotted
dashed, and triple-dotted–dashed lines cor
spond to increasing values of the parameter be
varied. ~a! Lx50.1, 0.3, 0.5, 0.7 m,~b! mmax

50, 1, 2, 3,~c! x50, 0.08, 0.16, 0.24 m.~d! Ex-
panded view of the alpha peak in~c! for x
50, 0.02, 0.04, 0.06 m.
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5
GesL~v!

12Gii L~v!

cosh@q~Lx22uxu!/2#

2qre
2 sinh~qLx/2!

, ~77!

which holds foruxu<Lx and can also be written

G~x,v!5
GesL~v!

12Gii L~v!

1

2qre
2

3$tanh~qLx/2!cosh~qx!2sinh~quxu!% ~78!

5
GesL~v!

12Gii L~v!

1

2qre
2 $e2quxu1cosh~qx!

3@ tanh~qLx/2!21#%. ~79!

The 1D continuum result is

G~x,v!5
GesL~v!

12Gii L~v!
E dk

2pr e

eikx

k2r e
21q2~v!r e

2
~80!

5
GesL~v!

12Gii L~v!

e2quxu

2qre
2

. ~81!

The discrete expression~79! rapidly approaches the con
tinuum limit ~81! as Re(qLx) increases beyond about 2. F
smaller values of Req there are resonances at the same
cations in theq2 plane as for the spectra discussed in S
IV.

Figure 4 shows variations inuG(x, f )u as a function of
frequencyf as Lx , mmax, and x are varied in a 1D cortex
whose parameters are otherwise those of Table I. In Fig.~a!
it is seen that the continuum limit is rapidly approached asLx
increases, with significant differences only below 1 Hz
Lx*0.5 m where the discrete and continuous versions s
as f 21 and f 21/2, respectively. Rapid, but nonmonotoni
convergence to themmax5` limit is seen in Fig. 4~b!, with
mmax51 sufficing to obtain excellent agreement up to cir
30 Hz. In Fig. 4~c! we see that the high-frequency comp
04190
-
.

r
le

nents ofG(x, f ) weaken and themmax50 form from Fig. 4~b!
is approached asr increases, reflecting the rapid damping
these waves. In contrast, the low-f part is almost indepen
dent ofr, reflecting the dominance of them50 global mode
in this case. Apart from the substructure near the alpha re
nance, the continuum limit is found to be a much bet
approximation at smallr, which reflects the requisite inclu
sion of a large number of modes up to at leastk;1/r in order
to resolve the spatial scales involved. Figure 4~d! shows that
the modal Green function also exhibits two subpeaks in
alpha rhythm. These correspond to them50 ('10 Hz! and
m561 ('11 Hz! resonances and appear stronger than
the spectra, because only a singler value is involved: when
sources at variousr contribute to a spectrum, the larger
contributions, which involve primarily them50 mode,
dominate the more local ones, which contribute to the s
ondary peak.

B. 2D cortex

The continuum limit yields the explicit 2D result~51!, and
the double sum involved in the 2D analog of~76! can be
reduced to the 1D sum

G~x,v!5
GesL~v!

12Gii L~v!

1

2r e
2Ly

(
n52`

`
1

qn
exp~ i2pny/Ly!

3$tanh~qnLx/2!cosh~qnx!2sinh~qnuxu!%, ~82!

but ~82! does not seem to be able to be evaluated in clo
form. We thus proceed numerically in this section, ap
from noting that 2nmax'2mmaxLy /Lx terms are required in
~82! if 2mmax terms are significant in the sum overm.

Figure 5 shows variations inuG(x, f )u vs f as Lx5Ly ,
mmax, andr5(x,0) are varied in a 2D cortex whose param
eters are otherwise those of Table I. The conclusions are
similar to those for the 1D case seen in Fig. 4. One differe
is that the second alpha subpeak is slightly stronger in 2D
seen in Fig. 5~d!, because of the larger number of mod
contributing to it.
9-10
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FIG. 5. Green functionsuG(r , f )u vs f for r
5(0.08,0) m and the parameters in Table I, b
various values ofLx , mmax, andr in a 2D cortex.
In frames ~a! and ~b! the solid line shows the
continuum limit, while the dotted, dashed, dotte
dashed, and triple-dotted–dashed lines cor
spond to increasing values of the parameter be
varied. ~a! Lx5Ly50.1, 0.3, 0.5, 0.7 m, ~b!
mmax50, 1, 2, 3,~c! r 50, 0.08, 0.16, 0.24 m.~d!
Expanded view of the alpha peak in~c! for r
50, 0.02, 0.04, 0.06 m.
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VI. RESONANCE MECHANISMS

A key aim of EEG theories has been to explain the occ
rence of the major rhythms seen in waking and sleep
states, particularly the alpha ('10 Hz! and beta ('20 Hz!
waking rhythms, and the theta ('5 Hz!, spindle ('14 Hz!,
and delta (,3.5 Hz! rhythms most prominent in sleep. Th
recent prediction and tentative detection of additio
rhythms at nominal frequencies of around 25 Hz in sleep
30 Hz waking further extends this task@5#. A comprehensive
theory should also account for the splitting of the alp
rhythm into two subpeaks, as seen in a few percent of nor
individuals, and the occurence of Rolandic mu rhythm,
alphalike rhythm most prominent centrally on the head a
which also possesses a betalike component@9#. Several
mechanisms have been proposed, including ones base
modal resonances. We briefly recapitulate these here, inc
ing new ones based on the present work, and outline s
experimental tests that can be used to distinguish betw
them.

One mechanism that could account for any number
peaks is that of pacemakers located in the thalamus or e
where in the brain, each of which comprises neurons wit
characteristic frequency. It is argued that these neurons
tually entrain one another via nonlinear couplings, leading
a linewidth less than that of the frequency response curv
any single neuron@9#. Although neurons with resonant fre
quencies certainly exist, the pacemaker theory has a num
of problems. First, it does not explain why the resonant f
quencies are approximately in a harmonic relationship in
waking state, nor why sleep resonances occur almost exa
midway between the waking ones. The transition from w
ing to sleep would involve deactivation of the pacemak
for resonances at 2, 4, and 6 times a base frequenc
around 5 Hz, and activation of those at 1, 3, and 5 times,
this pattern is not explained by the theory. Nor does pa
maker theory account for the strong enhancement of d
waves in sleep or the splitting of the alpha peak seen in s
subjects~except perhaps via the ad hoc addition of anot
pacemaker at the requisite frequency!. Moreover, from the
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point of view of parsimony, postulation of a different pac
maker for each peak is unconvincing.

A second widely discussed mechanism is that resonan
may be the result of spatial cortical eigenmodes, with s
structure caused by the breaking of modal degeneracy by
complicated cortical geometry@7,8#. In a series of papers, w
have shown that purely cortical waves appear to be
heavily damped to have sharp resonances and that such
nances are certainly not possible for the cortical part of
model discussed here for physiologically realistic parame
@1,5#. Nunez has developed a different model in which the
are additional degrees of freedom in choosing the rela
coefficients in a wave equation analogous to~14! @7,8#. In his
model, it is possible in principle to obtain weakly dampe
standing waves at any frequency, with the actual reson
frequencies selected by the cortical geometry. One predic
of this model is that the frequencies of the global resonan
should not depend on location in the cortex, although th
amplitudes may vary due to differences in overlying tissu
etc. Under this mechanism, splitting in peaks is predicted
be due to breaking of initial degeneracy as a result of g
metric asymmetries in the real cortex; the globally unifo
mode is nondegenerate and cannot be split by this me
nism. Relative amplitudes of split-band peaks should
similar at all locations as long as the splitting is not so lar
that the two peaks undergo significantly different spatial
tering, and provided that the eigenmodes have similar spa
structure. If the latter proviso is not fulfilled, the higher fr
quency mode of an initially degenerate pair will tend to ha
higher amplitudes in frontal regions because the poste
lobes of the brain are larger, implying smallerk ~and hence
v) is favored in this region. This argument is exactly ana
gous to standard textbook ones used to infer the qualita
spatial structure and frequencies of pairs of initially dege
erate quantum mechanical eigenmodes in the presence
perturbing potential that breaks that degeneracy.

We have previously argued that the major EEG peaks
due to resonances in a corticothalamic feedback loop, d
onstrating that this mechanism can account for the en
9-11
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series of resonances previously seen, their inversion in s
along with simultaneous enhancement of delta, and the
currence of additional resonances near 25 Hz in sleep an
Hz waking@5#. In the present paper, we have shown that t
mechanism can also account for weak substructure in
alpha peak arising from the effect of purely cortical eige
modes in frequency ranges where damping has been red
by the CT resonance, particularly if the measuring electr
is close to a localized source at the frequency involved. T
mechanism predicts that there should be little or no struc
in the beta resonance, because its part of theq2 locus is
relatively remote from the resonance poles. It also imp
that there should be anf 22 enhancement in the delta range
the cortex is very near marginal stability. As with the pre
ous mechanism, this one predicts that neighboring pe
should exhibit no spatial variation of resonance frequenc
and little variation in relative amplitudes, although absolu
amplitudes may change. Again, one would expect the hig
frequency mode of a split pair to be predominantly fron
~this does not apply to resonances due to different mo
such as them50 andm51 resonances, since these are no
degenerate to begin with!.

A second alternative involving CT loops is that cortic
eigenmodes may be largely irrelevant to submode struct
but that there may be two different values oft0 in split-alpha
subjects. In this crude form, this suggestion suffers fr
similar objections to the pacemaker idea~on the grounds of
being ad hoc!, although eacht0 value gives rise to an entir
family of peaks, not just one. However, a bimodal distrib
tion of t0 values can arise very naturally and robustly, sin
loops from the thalamus to various parts of the cortex a
back are not all of the same length, and there will thus b
spread in the value oft05t0(r ). In particular, there must be
at least one maximum and one minimum oft0 corresponding
to the longest and shortest CT loops, most likely at the fr
and back of the head or vice versa. If the spatial sec
derivatives oft0 are increasing in magnitude at these ext
mums, it is straightforward to show that there will be
enhanced probability of observing these values oft0, relative
to nearby values, with a reduced probability in the oppos
case. In the first case, if the maximum and minimumt0 val-
ues differ sufficiently they may give rise to distinguishab
peaks in the spectrum. A key observable consequence of
mechanism would be that all CT resonances would be
pected to be affected in the same way, including the b
rhythm in particular. This contrasts with the cortical su
mode mechanism which would affect the alpha peak pre
entially and would lead to different~and probably unobserv
ably weak! submode structure within other CT resonanc
One would also expect systematic shifts in the resonant
quencies and relative amplitudes of alpha subpeaks ac
the scalp, although each value oft0 would be observable a
an attenuated level over much of the scalp because of
spread of corticocortical fibers arising from each point. U
der this mechanism the power spectrum is due to a supe
sition of the effects of various values oft0, and at low to
moderate frequencies all peaks are dominated by the
sponse of the global mode in the presence of the ove
feedback via the thalamus—peaks do not generally co
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spond to different spatial eigenmodes. Rolandic mu rhyt
fits naturally into this picture as the alpha rhythm corr
sponding to corticothalamic loops in the central part of t
cortex, particularly involving the sensorimotor cortex whic
is known to be involved in mu@9#. This mechanism predicts
that the spatial attenuation of a given spectral peak will re
largely from its intracortical damping and, hence, th
sharper peaks~which are necessarily weakly damped! should
have more uniform spatial distribution than broader ones

Another possibility is that pacemaker cells may operate
conjunction with cortical or CT resonances, effective
sharpening the resonance beyond what could be achieve
either mechanism alone. For example, in the CT context,
q2 curve could be distorted toward a nearby pole even
weakly resonant pacemaker effects, producing a signific
enhancement in the spectrum without a large abso
change inq2. Such compound mechanisms are quite p
sible, particularly given that weakly resonant neurons ha
existed in the thalamus, for example, for millions of years
any evolutionary advantage accrues to sharp resonances
aptation of these cells to enhance them is likely to have
cured, but investigation of such possibilities is beyond
scope of the present work.

VII. SUMMARY AND DISCUSSION

We have examined the effect of boundary conditions a
resulting discrete spatial eigenmodes on the predictions
our corticothalamic model of EEG generation, generalizin
in the process. This work yields equations for modal dyna
ics, spectra, and the response functions correspondin
steady state evoked potentials and evoked response p
tials. These equations incorporate both modal and cortico
lamic resonances, enabling a unified treatment of these
tential resonance mechanisms, contributing to determin
their relative effects on observations, and laying the grou
work for future nonlinear EEG studies.

Our results for modal effects on white noise-driven sp
tra showed that, for human parameters, the continuum l
~no modal effects! is an excellent approximation at most fre
quencies for systems of linear cortical sizes exceed
roughly 0.2 m, which is well fulfilled for humans (Lx'0.5
m!. The exceptions are at very low frequencies (f &1 Hz!
and near the alpha resonance. At lowf in a marginally stable
system, the uniform mode produces a spectral enhancem
with P( f ); f 22, rather than the continuum behaviorf 21.
Near the alpha frequency, some substructure may be se
the resonance is strong, but distinct subpeaks were not fo
for parameters near the physiologically realistic ones. T
substructure seen is due almost entirely to the effects of
global mode and the modes nearest to it in Fourier spac

It was further found that the modal spectrum was rep
duced semiquantitatively up to the vicinity of the alpha fr
quency by the contribution from the global mode alone,
though the alpha peak was somewhat narrower and m
pronounced in this approximation. Inclusion of furth
modes led to rapid convergence toward the limiting resu

Green functionsG(r ,v) were calculated in Sec. V, in
cluding modal and corticothalamic effects. There it was
9-12
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gued that these functions represent steady state poten
evoked by sinusoidal stimuli~SSEPs!, while their Fourier
transformsG(r ,t) represent responses evoked by impuls
stimuli ~ERPs!. Our results again showed that modal effe
were most prominent at very low frequencies and near
alpha peak, especially close to a localized source. In o
respects, the continuum approximation is best at sh
ranges, where many modes must be included to resolve
spatial scales involved, while the global-mode approximat
is best at large scales.

Several possible mechanisms for the production of ma
EEG resonances, substructure within them, and rela
rhythms such as Rolandic mu, were critically discussed
Sec. VI, and experimentally testable predictions were lis
for each. It was argued that pacemaker mechanisms h
trouble in accounting convincingly for the relative freque
cies of major rhythms, and sleep–wake variations. Pu
cortical resonances have difficulty avoiding strong damp
for physiologically realistic parameters, and we argue t
they predict higher frequencies for frontally concentra
members of modal pairs whose degeneracy has been br
by geometric irregularities. Corticothalamic resonances
weaken damping sufficiently for cortical eigenmode stru
ture to become significant near major rhythms, primarily
alpha peak; again, higher-f members of initially degenerat
pairs should be frontally concentrated. The most promis
mechanism overall relies on corticothalamic resonance
ke

io

or
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produce the major rhythms, and a distribution of CT dela
t0 to produce substructure in these resonances. This me
nism predicts correlated substructure in both the alpha
beta peaks, accounts for relative frequencies of peaks,
sleep–wake differences. It also predicts a inverse relat
ship between peak sharpness and spatial attenuation.

Overall, we thus conclude that the effects of spatial c
tical eigenmodes are relatively weak for physiologically r
alistic parameters, except perhaps in very narrow param
regimes. In any event, they only appear to be significan
frequency ranges in which corticothalamic resonances h
weakened the wave dissipation to the point that spatial eig
modes are weakly damped. The most robust signature
cortical modes are expected to be thef 22 enhancement a
very low frequencies in marginally stable systems, and p
sible substructure in the alpha peak with specific spa
properties that contrast with those expected from ot
mechanisms. From the perspective of numerical model
we conclude that convolutions and other cortical irregula
ties and detailed boundary conditions are not very import
in determining the form of the spectrum under most circu
stances.
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