PHYSICAL REVIEW E, VOLUME 63, 041909

Modal analysis of corticothalamic dynamics, electroencephalographic spectra,
and evoked potentials

P. A. Robinsort* P. N. Loxley™" S. C. O’Connott and C. J. Rennie?®
1School of Physics, University of Sydney, New South Wales 2006, Australia
°Department of Medical Physics, Westmead Hospital, Westmead, New South Wales 2145, Australia
3Brain Dynamics Center, Department of Psychological Medicine, Westmead Hospital and University of Sydney,
Westmead, New South Wales 2145, Australia
(Received 3 October 2000; published 29 March 2001

The effects of cortical boundary conditions and resulting modal aspects of continuum corticothalamic elec-
trodynamics are explored, including feedbacks. Dispersion relations, electroencephalographic spectra, and
stimulus response functions are calculated from the underlying physiology, and the effects of discrete mode
structure are determined. Conditions under which modal effects are important are obtained, along with esti-
mates of the point at which modal series can be truncated, and the limit in which only a single globally uniform
mode need be retained. It is found that for physiologically plausible parameters only the lowest cortical spatial
eigenmode together with the set of next-lowest modes can produce distinct modal structure in spectra and
response functions, and then only at frequencies where corticothalamic resonances reduce dissipation to the
point where the spatial eigenmodes are weakly damped. The continuum limit is found to be a good approxi-
mation, except at very low frequencies and, under some circumstances, near the alpha resonance. It is argued
that the major electroencephalographic rhythms result from corticothalamic feedback resonances, but that
cortical modal effects can contribute to weak substructure in the alpha resonance. This mechanism is compared
and contrasted with purely cortical and pacemaker-based alternatives and testable predictions are formulated to
enable experimental discrimination between these possibilities.
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I. INTRODUCTION incorporating modal effects explicitly into our model and
determining their influence semiquantitatively. A further mo-

In recent work, we developed a physiologically basedtivation for the present work is the reasonably common ob-
continuum model of corticothalamic electrodynamics that isservation of split-band alpha activity, displaying two discrete
able to reproduce and unify the main features of observe@lpha frequencies in a single individual, typically separated
EEGs, including the discrete spectral peaks, or rhythms, sed® 1-2 Hz. It is plausible that these peaks may represent
in waking and sleeping statés—6]. In most of these papers nondegenerate e!genfrgquencies thgt happen to occur i'n the
we argued that the typical damping rate of cortical waves igréquency range in which damping is weakened by cortico-

sufficiently large that boundary conditions make little differ- thalamic feedback effects. By unifying treatments of cortico-

ence to their properties. However, it has long been reco thalamic feedbacks and cortical modal effects, we will deter-

nized that, if frequency ranges exist in which damping iSmine the feasibility of such a mechanism and contrast it with

small, the effects of discrete eigenmode structure in the finit ther possible explanations such as the existence of multiple

cortex will be importan{7.8]. Our recent work on cortico- pacemakers or subcortical loops with different resonant fre-
. e T quencies.
thalamic feedback indicates that damping is indeed weak- A further motivation for our work arises from the fact that

ened by such f_eedback at frequencies close to the spectrg&alp EEGs are spatially large scale becaliséhe cortical
rhythms, especially the alpha and beta rhythms near 10 angynq) is spatially low-pass filtered by the effects of volume
20 Hz, respectively, in the waking state, and theta rhythmygnqyction in overlying tissuel?,8,10, (i) electrodes are
and sleep spindles near 5 and 15 Hz, respectively, in slegatively widely spaced in practice, leading to coarse spatial
[9]. resolution, (i) some rhythms are intrinsically spatially ex-

In our model, the above rhythms result from resonances ifended, andiv) the least damped modes are the largest scale
a corticothalamic feedback loop, rather than lying at the freoneg[1,2]. In previous work we used these features to justify
quencies of purely cortical eigenmodes; however, their weakxploring spatially uniform, or global, cortical dynamics as a
damping opens the possibility that cortical eigenmode effectéirst approximation to the overall cerebral electrodynamics
may also be important near these resonances, even if nf]. Here we extend these ideas to the corticothalamic system
elsewhere. Hence, a key aim of this paper is to reconciland explore how many modes are needed to represent the
these two views of the production of EEG resonances bylynamics well enough to predict spectra and the potentials

evoked by discrete stimu[é4].
Recent work has showed that some seizure EEGs have

*Electronic address: robinson@physics.usyd.edu.au simple structures that imply that the underlying dynamics is
"Present address: Department of Physics, University of Westertow dimensiona[11], possibly following a strange attractor
Australia, Nedlands, Western Australia 6009, Australia. or limit cycle in a relatively simple parameter space. There
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has also been considerable interest in possible nonlinear as- o3 y/Qmax
pects of the alpha rhythil2]. By verifying the dominance STHy)= 0,40 In( a ) ,
of a few low-order modes, the analysis carried out here pro- m 1-y/Q3™
vides a natural and systematic means of obtaining truncated,
low-dimensional systems of equations with the potential of y 1
reproducing the nonlinear dynamics of seizures. Amax 2

In Sec. Il we briefly review and generalize the corticotha- S, Hy) =60+ 0 a

_— (6)
lamic model developed in our previous work, including both y ( Ly )

©)

intracortical and corticothalamic feedbacks. We then impose max
a

max
boundary conditions and expand the resulting equations in a a

series of spatial eigenmodes in Sec. Il and find equations for The potentialV, can be writter{5]

the time evolution of the expansion coefficients. Section IV

is concerned with modal predictions for spectra and the cir- o ) e

cumstances under which modal effects are important. A Va(r.)= leL(t—t )Pa(r,t)dt’, @)
similar discussion of response functions applicable to steady

state evoked potentials and evoked response potentials is L(u)=c?ue “0(u), (8)
presented in Sec. V. In Sec. VI we critically discuss a range

of mechanisms for the production of spectral resonances, egthereP, is the mean potential generated by action potentials
pecially split-band alpha rhythms, including new possibilitiesarriving from other neuron®) is the unit step function, and
implied by the results obtained here, and formulate testablg is a rate constant. Hence,

predictions to enable experiments to discriminate between

them. D,Va=P,, 9

1 d*> 2d

Il. THEORY - 4+ —
Q% dt? adt

+1. (10

In this section we outline the main relevant results of our
neurophysical continuum model of the corticothalamic sys-The Fourier transform of (u), is
tem, and its predictions of EEG spectra and evoked poten-
tials [5], generalizing them where relevant. Readers should L(w)=(1-iw/a)”?, (1)
see Ref[5] for further details and additional references. In =~ = ) i _
this section we consider the case of an infinite cortex inwhich implies that the dendrites act as a low-pass filter with

which boundary conditions play no role. cutoff frequencya. _ o
The potentialP, comprises contributiong, ; from other

rtical neurons, an rtical in :
A Basic model cortical neurons, and subcortical inputs

The mean firing rategor pulse densitigsQ, of excitatory Pa=NaeSehe + NaiSi b + NasSsps - (12)
(a=e€) and inhibitory @=i) neurons are approximately re-

lated to the cell-body potential, by Here,N, is the mean number of couplings from neurons of

type b=e,i,s to those of typea, andsy is the size of the
Q.(r,t)=3[V,(r,1)], (1) response to a unit signal from neurons of type
The field ¢, of outgoing pulses propagatesvat 5—10 m

where the sigmoidal functio® increases monotonically S = and obeys the damped wave equation

from 0 to a maximunQI'* asV, increases from-c to .

Two such forms o, used below are Dada(r.t)=Qa(r.), (13
2 D =i2 a—22+2)/ L y2—v2V2 (14)
34(Va)= 2 2 T oyalatt TTat e ’

1+exp —7z/\3)’
wherey,=v/r, andr, is the range of axona.
7—1+(22+1)Y2 Our model incorporated corticothalam{€T) feedback
— (3) [13-16, by assuming that is the sum of a non-CT part
¢n and a feedbackpt, which originates where part of the
excitatory field ¢, projects to the thalamus, then returns to
z=(Va—0,)l o, (4 the cortex. This adds a propagation time defgyandn~1
extra stages of dendritic filtering with rate constajt «.
whered, is the mean threshold of neurons;, is the standard  Qur previous work showed that the approximatioal was
deviation of this threshold;)?ax is the maximum firing rate, adequate, and we assume it hencefsth We also allowed
andX(6,)=QL®¥2. The coordinate in (1) refers to posi- for the possibility of both direct feedback, and feedbacks that
tion on the cortex, modeled as a two-dimensional sheet. Fa@@mphasize changes in cortical signals by differentiating them
later reference, the inverses @) and(3) are in the loop. These features yield

2Z(Va) = ?ax
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P(r,r',to)

_Gee - Dy
Da(]sT(r,t)—G_esfo dtoJ d r 012 T T T T

0.10¢1

Jd
+¢,(rvr’vt0)t05 ¢e(r,1t_t0)v (15) 0.08[

where the prefactor on the right is separated out to simplify 0.06¢

later algebra, angs and 4’ measure the strengths of direct

and differential feedbacks. Equati¢tb) generalizes our ear-

lier results by including possible dependences of the feed-

back onr, r’, andty, whereas these were previously treated

as being spatially constant and delta function in tif6é

More generally, there are likely to be relatively slow depen- —0.02H

dences ofiy and ¢’ ont itself—in changing between states 000204060810

of arousal, for example—but we ignore these here, simply P/ Qo

adopting .the appropriate values for the given §tate. . FIG. 1. Determination of steady states. Solid and broken lines
Local intracortical feedbacks are also possible. PrewoushoW schematic forms of left-hand and right-hand side<16j,

analysis showed that a broad class of such feedbacks can rBeespectively, in cases with three roots, with the dotted linexfgr

0.04r
0.02r
0.00

LHS and RHS of (19) (arbitrary units)

written [3] =0, the dashed line fog,,>0, and the dotted—dashed line for
) Xs4<0. In drawing this figure it is assumed this.(1+ ¢)
D, [X(r,t) —xXO7 =y Ly(r,H)—y©@], (16)  +N,s>0 is satisfied, so that the straight line has a positive slope.
1 d represents an unstable equilibrium, the lower corresponds to
Dyy=— at +1, 17 normal activity, and the upper to a high firing rate seizurelike
xy state[2].

If xs4# 0, the form of the right-hand side ¢£9) is modi-

where 7y, is a time constang, is a small non-negative inte- fied by the replacement

ger, xxy is the linear susceptibility of a quantityto changes
in another quantity (x, could more generally be position- o 0
dependent and/or nonlingax is a feedback-dependent vari- Sp=54"+ Xsgl e dL]. (20
able with steady-state value®, andy is a variable of

steady-state valug!® that drives the feedback. Typically, Equation(20) yields a quadratic form for the right-hand side
X=Sp OF 0 andy= e Or V. We found that the resulting ot (19), as illustrated in Fig. 1. IE=3,, the steady state
wave dispersion relations fell into only four distinct Classes’equation(lg) becomes a quartic igh,. The topology of the
greatly simplifying their analysig3]. In places below we use | of the left-hand and right-hand sides @) in this case
feedback of. on s, as an illustrative example, for which g gych that an odd number of solutions must occur between
the relevant feedback equation can be wriftéh $e=0 and p.= dM*=Q"™ a conclusion that also follows
from the requirement that stable and unstable steady states
Dl So(r,) =S 1= xsal de(r,t) — o] (18)  alternate, with stable ones at both ends of the sequigice
Hence, at least one of the four roots lies outside the physical
range, and at least one lies in it. The result that either 1 or 3
roots lie in the physical range can be assumed to apply to any
Upon setting all the spatial and temporal derivatives topther forms of3, that incorporate robust features of the
zero in(1)—(18), these equations determine the steady stateghysics—further roots might be possibleSithad a specially
of cortical activation, when the cortex is driven by a con-chosen form, but would not be robugtithough they might
stant, Spatially uniform non-CT StimU|U$N. By analogy Correspond to patho|ogica| Stales
with Ref.[2], one finds The effect of increasing the external stimulgg, is to
_ shift the straight line and quadratic curves up in Fig. 1.
27 Hhe) =[NeeSe( 1+ )+ NeiSildetNessen, (19) Hence, as has been discussed previo[Bythere should be
one low-p, root at very low(or perhaps negatiyepy , with

in the steady state. . _ _ _ two more roots appearing at intermediatg, and a single
The structure of the solutions ¢19) is easily seen inthe high-¢_ root at very highy.

case in whichysy=0, implying s,=s{"). In this case, the
left-hand side 0f19) is monotonic increasing with a down-
ward curvature forg,<Q{¥2 and upward curvature for
larger ¢, as illustrated in Fig. 1, while the right-hand side  Small perturbations relative to the steady states of the
of (19 is linear in ¢,. Hence, either one or three solutions previous subsection obey a linear wave equation. For con-
exist [2]. When three solutions are found, the middle onestant and ¢', with a single value oty and a thalamic

B. Steady states

C. Linear waves
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dendritic rate constant equal t®, this yields the transfer that must satisfi5=0 for the system to avoid instability at

functions[3,5] =0 [5], although further conditions must be satisfied for
bu(k.o) stability at all frequencies. Comparison with data has showed
el @) _ . that S<1 and that the approximaticd®=0 can be made for
Dka) ~ Cet(@F(DemFop[1-Gil(w)IFsy 0 s

In general, the dispersion relatiq34) must be solved
numerically to obtainw in terms ofk. The special case with
¥=0, > w, and no intracortical feedbacks can be solved

~Ged 1+ ¥ (w) (@) ]L(@)FsyF o} (2D

= Ged-(@)F gy 1 (22)  analytically (along with a few other special cagetn this
[1-GjiL(@)]Fsv KI5+ g%(w)rs’ case, one finds that the system supports waves that are purely
damped and nonpropagating for.<<1, but which approach
De(k, @) =k?r3+(1—-iwl ye)?, (23)  damped plane waves at largewith
Yyt 9 0=—ly.* 'Ye(kz g_ 1)1/2- (36)
eiwto
(w)= (1-iwla)? CO general[1].
For nonzero feedbac¥ we previously found that waves
Fs¢=1+Xs¢¢éo)Ds¢(w)/Séo)7 (26) are least damped at even multiples »ft, if >0 and
' 14>0 or if both these inequalities are reversed, and at odd
Fo=1— Neest¢(eo)st(w)L(w), 27 multiples if only. one is reversed, as appears to be the case in
sleep[5]. We will discuss the consequences for spectra and
F o= pexssD ps(®), (29) instabilities in the next sections.
FHV: 1_X0VD QV(w)v (29) D. Spectra
Dyy(@)=1—iwl/ 7. (30) In previous work we used the complexity of cortical in-
puts to approximate fluctuations i\ relative to its mean as
qP(@)rg=(1-iw/y)?=Fy, white noise in space and time. In calculating scalp EEG
spectra we also included filtering via volume conduction in
Ged 1+ V(w)7(w)L(w)FgyF gy 3 intervening tissue$5,7,8,10, as fitted by the spatial filter
[1-GyL(w)]Fay 39 function
in Fourier space for feedbacks of excitatory quantities on F(k)=e ko, (37)

excitatory ones, with analogous equations for inhibitory
ones. In(21), (22), and(31) the gainsG ;= paNapS, EXPress
the response of neurorgsto a unit signal from neuronb.
The parametep,=dQ{”/dV, is evaluated in the steady
state wher®?)=5-10 s '<Q"*is the steady-state firing

where F(k) is the square of the ratio of scalp to cortical
voltage andky~30 m L. The resulting spectrum was

rate. One has P(w)=J oK) PF () K @8
71.Q(O) Q(O)
pa=—0 (1— %x) (32
U'a\/§ a —p L(w) ‘2
max(22+1)1/2_l N [1_Gii|—(w)]|:sv‘
Pa . (33)

- 20 22(22+ 1)1/2 !
’ Im{exp(q* /K3 Ex(a* 2k
X

for 3, andX,, respectively. |g?r2|sin 6 w39
The dispersion relation of waves in our model system is €
given by setting the denominator (2) to zero, giving
2 2 —
K+ a%()=0. 39 Pn= 7| $nGedF |12, (40
For the system to be stablg? must not cross the negative
real axis[5]. We defined a stability parameter where 6=Arg(q?), | ¢3| is the white-noise power level in
G.(1+ Fourier space, anét, is the exponential integral function
Szl_M (35) [17]. This result generalizes an earlier offg to include
1-G;

Xy -+
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The limit ky—o° corresponds to the absence of volume

conduction in which case one hgg

Lw)  |?
M[1-GiL(0)IFsy g% sing’

P(w)=P (41)

Realistic values ok, yielded low-pass frequency filtering

with a cutoff of around 30 HZ%5]. For simplicity, we ignore
the factorF (k) from now on.

PHYSICAL REVIEW E 63 041909

E. Green functions and evoked potentials

An evoked response potenti@RP; also termed an event
related potentialis the transient response of the brain to an
impulsive stimulus. We have argued that an ERP can be
represented by the impulse response to a delta-function
input—the Green function of the systef8,19. Closely
related to ERPs are steady state evoked poter(&8&EPS
which are responses to monochromatic sinusoidal inputs.

In Fourier space, the Green functi@{k, ») is simply the

The shape of the spectrum depends strongly on the locustio ¢/ ¢y given by(21) or (22), its poles define the linear
of g2 in the complex plane, with instability occurring if this dispersion relation, and its squared modulus yields the spec-
locus intersects the negative real axis. We have shown thatal power atk and w. When analyzing SSEPSs, one is inter-
(39 can reproduce both the peaks and the underlying spe@sted in the respons&(r,») a distancer from an input
trum seen in EEGs for physiologically reasonable values opoint. This is given by

the input parametels].
If S~0, g?(0)~0, the behavior oP(w) at smallw de-
pends on the leading terms in the expansiong®fw) in

powers ofw, and the effects of volume conduction can be

ignored in this frequency range. This gives
qz(w)rg:jzo Aj(—iw), (42)

where theA; are real5].

Momentarily ignoring the spectral peaks and examining

the smooth, underlying spectrum 8+ 0, one finds a small-
w regime in which[5]

(43

with Go=(1—Gj;) (1~ Neexsvol?). If A, is very small, this
is modified to

(44)

andA; =0 defines a stability boundafp]. At large w

_ Pyma®By,

(49)

Assumingy’' />0, we found that the frequencies, of
spectral peaks are given approximately[BY

Omto=Xm+ SN (' X /| W ] ) SigN( ), (46)
Xm=(m—1/2) 7, (47

Wl = (97 + 9" 2x) M2 (48)

with m=2,4,... for >0, m=1,3,5... for <0, and

sign(u)=0 for u=0 here(the families ofm values are re-
versed ify' /¢ is negative. The positiveys peaks correspond
to waking states, and negativeto sleep5]. Alpha and beta
rhythms correspond tm=2 andm=4, respectively, while
theta and sleep spindles hawve=1 andm=3.

. _ Ged(@)Fyy szk el
O =G @Fer) (2m? k2t (w2
(49)
 Ged(o)Fpy (= kJo(kr)
_[1—GiiL(w)]Fsvf0 om0
_ Ged(0)Fp  Kola()r]
[1-GjL(w)]Fsy 2mr; o

whereK is a Macdonald functiorfa modified Bessel func-
tion of the second kind[17] and Reg>0 for stable solu-
tions. This result generalizes one obtained previously for
purely cortical waves angl,,=0 [18]. The dominant behav-
ior of (51) at larger is exd —Re(qr)], implying that wave
intensities fall off rapidly with distance unless Rés small
or, equivalently, unlesg? lies near the negative real axis.
The time dependence of ERPs is of great interest in ap-
plications, requiring the calculation &(r,t). The Fourier
transform of(51) to the time domain cannot be evaluated in
closed form in general, but is straightforward to calculate
numerically and does not lead to modal aspects beyond those
involved in G(r,w); hence, we do not consider it further
here.

Ill. MODAL FORM OF CORTICOTHALAMIC
EQUATIONS

In this section we expand the dynamic equations from
Sec. Il in series of spatial eigenmodes with time varying
coefficients. For definiteness, we consider only Fourier
modes of a one-dimensionélD) or 2D rectangular cortex
here, since they incorporate the main physical feature of dis-
creteness due to the imposition of boundary conditions. A
spherical cortex can be treated using spherical-harmonic
eigenmodes with modest additional effort, while spheroidal
eigenmodes are considerably more compRlx and the ac-
tual convoluted geometry of the cortex is amenable only to
numerical treatment. Before any attempt to proceed to the
full cortical geometry, our aim here is to determine the quali-
tative effects produced by discrete modal structure and to
find the conditions under which they become important. Use
of a rectangular system in 2D enables this to be done, while
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removing some of the degeneracy implicit in a square one,

Nee [ d°
while 1D systems are used in some illustrations in later sec- D ¢pr(k,t)= —— P W (k,p) pe(—p,t—tg),
tions. Nes) (2m)°
If we consider moderatéut not necessarily lineaper- (57
turbations relative to a steady state with=V{?, the Fou- q
rier transform of(1) can be expanded in either of two equiva- W (k,p)=y(k,p)+ ' (K,p)to— (58)
lent series: ' ' T

_<(0) (1) _ in Fourier space, wherg and ¢’ have each been expanded
Qa(k ) =26(k) + X[ Va(k, 1) = Vad(k)] in double Fourier series inandr’ to obtain(56), with

3(2) )

- _oy(0) (0)2 ) -
+ 2 [Va(kvt) 2Va Va(kat)+va 5(k)] \P(k,p):f dDr dDr!eIk-relp~I’ \P(r,r,). (59)

+-- (52

In the special case in whicH/(r,r") depends only orr
—r’, Eq. (15) is a convolution and one finds

=2\ Qsk)+ 2 AVIk,Y), (53) Now
" D, (k)= = W(K) de(k,t—to), (60)

where3 (™ is thenth derivative ofS evaluated av{?) and
the \(", which arenot derivatives, are easily obtained by \If(k)=¢p(k)+zp’(k)tog- (61)
comparing(55) and(56). In Fourier space the quantikﬁ is dt

expressible as the convolution " .
P When boundary conditions are imposed, the valuek of

d°p and p are restricted in our modal equatiof®, (10), (13),
VA(k )= f —SVapOVa(k—p), (54 (14 (16, (17, and(52~(6D), with
(27)
27m 2mn
: . . L . p=(—,—>, (62
in a D-dimensional system, with similar expressions for Ly " Ly

higher-order terms. Equatiofb4) embodies three-wave in- . .
teractions in which waves of wave vecandk—p interact ~ [0F @ 2D rectangular cortex of side,xL,, with an analo-
to produce a response lat Higher order terms in the series gous equation fok and an obvious simplification for a 1D

(52) and (53) represent four-wave and more complex inter-SYStem. In consequence, the integrals qvere replaced by
sums over the allowed values, with

actions.

The dynamical equation®) and (10) are unchanged in 2 % o
Fourier space, except that the argument¥ gand P, arek f d°p . L E (63)
andw. Likewise, Eqs(13), (16), and(17) are only altered by (2m)?2  Lilym= e nte’

the use of Fourier arguments, provideg, is constant, while

(14) becomes in 2D. The correspondend®3) yields the power spectrum
per unit area in the 2D discrete case, which corresponds di-
1[d? d rectly to what is calculated for continuols
D,=— —2+2*ya—+y2+k202 . (55
v dt dt 2

IV. MODAL EFFECTS ON SPECTRA

If feedbacks on they, are incorporated, the Fourier form of  There has been significant recent progress in calculating
(12) is the nonlinear equation EEG spectra from the underlying physiology. One issue that
remains contentious is whether the discrete spectral peaks are

dPp due in part or whole to discrete cortical resonances whose

Pa(k,t)= f ——5[NaeSe(P,t) pe(k—p,t) frequencies are set by spatial boundary conditions. Our work

(2m) has stressed the contrasting role of corticothalamic reso-
+Ng;si(p,t) di(k—p,t) + N,S4(p,t) nances in producing discrete peaks, with resonances induced

via time delays, not spatial boundary conditions. However, at

X{pn(k=p, )+ ¢r(k—p,0)}], (56)  frequencies where damping is small, it is possible that non-

degenerate spatial eigenmodes might give rise to peak split-

where ¢s= dn+ Pt ting, possibly including the production of split-band alpha

Finally, turning to the thalamic feedback equati@®b), rhythms seen in a significant percentage of subjects.
we note that virtually all neurons entering the cortex are In this section we explore the effects of discrete eigen-
excitatory, implyingGee/Ges~Nee/Ngs. If we further as- mode structure on spectra, retaining corticothalamic feed-
sume a single value fdg, as in previous work, and omit this backWV, but setting the intracortical feedback susceptibilities
argument fromy and ', Eg. (15 becomes Xxy=0. Moreover, we neglect filtering by the skull. We de-
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termine the number of modes that must be retained in a TABLE |. Physiologically realistic values of some corticotha-
modal analysis to reproduce various features of the spectrémic quantities, in the ranges used in Réf. Also included for

the circumstances under which a continuum approximatiofilustrative purposes are numerically determined valueg ahdy’

may be made, and the role of the cortical size in determiningPpropriate to a marginally stable waking state with a strong alpha

the spectrum. In Sec. IV A we illustrate many of the essentiaP&ak; these have not been estimated physiologically.
points using a 1D cortex, whose discrete spectrum can be

evaluated in closed form, before analyzing the 2D case in Quantity Value Unit
Sec. IVB. max 200 st
O, 15 mvV
A. 1D cortex e, 5 mv
In a 1D cortex of linear sizé&,, with periodic boundary @ 100 st
conditions, the power spectrum is given by Nae 4000
N,; 600
- 1 Nos 60
P@=Aw) [ 3 roomr Tz (69 Son 1 WV's
L +q -5 5 uV's
X v 10 ms?
r 0.1 m
Im[q coth(g*L,/2 ¢
_Aw) K¢ Zf(q Zx )]1 (65 [ 01 mm
2|97Im(q?) Ye 100 st
Vi 105 5_1
|¢N|2Ggs L(w) ‘2 Gee 1
e Ges 0.5
[20]. The corresponding result in the continuum case is EZ 17% ms
dk 1 ' 0.8
P(w)ZA(w)f 27 2T g7 (67) Ly,Ly 0.5 m
_ Alw) _ (68) [7,8]; the difference here is that cortical modal resonances
4|g?|Req can only become apparent at frequencies where the cortico-

We require Rg>0 for stability. If Re(@L,/2)=1, one
finds coth@L,/2)~coth(q*L,/2)~1 and the result65) ap-

thalamic loop already has a resonance that leads to weak
wave damping. This means that modal resonances may lead
to substructure in the CT resonandes., the split-band al-

proacheg68), implying that the system can be treated as apha structure discussed in Sec.)Vbut not to the major

continuum. This corresponds to waves with Kmwhich

measures the linewidth of the modekinexceeding the sepa-

resonances at the alpha, beta, and other rhythms.
Figure Za) shows a series of spectra calculated for the

ration 2m/L, between modes. At sufficiently high frequen- parameters in Table I, except thaf is varied. Rapid con-

cies, the condition for the continuum limit is fulfilled L

vergence to the continuum limit is seen fof=2r,=0.2 m,

=27, which is marginally satisfied in the human cortex, in accord with the above discussion. The only significant

according to the parameters in Tablé¢lhcidentally, to avoid

difference is that at small, , there is a large enhancement in

the physiologically wasteful phenomenon of corticocorticalthe low-frequency part of the spectrum, reflecting the strong
fibers that wrap more than half way around the cortex, ratherole of the uniform k=0) mode in this case because other
than taking a shorter routé,>r, must be satisfied, which modal resonances occur at large negatigefor small L,
implies that the continuum limit will also be at least margin- with exactly resonant values satisfying

ally valid in other speciesIf Re(qL,/2)<1, the waves are
weakly damped and one finds that the spect(@8) is domi-
nated by a series of resonances wheregliny(2) =m. In this
case, one can approximai®d) by

A(w)L}

Plw)~ (47m)?|qL,—2mi |’

(69

for Imq close tom#/L,. The dispersion relatiof34) then
implies that such waves satisky~ =27m/L,; i.e., they are

Q%ri=—kiri=—(2mro/Ly)?m?, (70)
for the mth resonance. The low frequency enhancement has
P(f)~f 2, as opposed t6~* for the continuum limit in this
marginally stable casgsee(43)]. For stable systems, both
spectra level off ag¥—0, but the modal one remains en-
hanced.

For modal resonance to produce discrete peaks in a 1D
cortex, the locus ofj?> must pass near more than one of the

weakly damped standing waves of the system. Such a respoles given by(70). If many poles are comparably close to
nance mechanism has been discussed extensively by Nunté® g2 locus at a particular frequency, as is the case at large
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w, for example, the continuum limit will provide a good

Figure 2d) shows an expanded view of the vicinity of the

approximation and discrete modal structure will not be seenalpha peak in Fig. @), revealing a shoulder at around 11 Hz,
Hence, visible modal structure corresponds to cases whekghich appears am,,,=1 and hardly changes for larger.

~2 poles are involved. The most prominent case is predicted@his is due to the contribution from th@=0 andm=*1

to correspond to then=0 andm= *+1 poles, since these lie resonances, whose poles lie gfr2=(0,0) and 1.6,0),
relatively close together and to the low frequency part of therespectively, in Fig. @) and are successively approached by
q? locus. Higher poles are less relevant to discrete modathe g? locus asf increases past the nominal alpha frequency.

effects since they also lie on the negative ggahxis and the
overall trend is for the imaginary part @f to increase in
magnitude with frequency, as illustrated in FigbR

Our earlier work on variations in the form of tle# locus
with physiological changefs] implies that it is very diffi-
cult, if not impossible, to obtain a locus that passes close

The number of modes contributing significantly to the enough to then=0 andm=+1 poles to produce strong

spectrum at a given frequency can be estimated f(6),
with the fractional contribution from wave numbers abdve
decreasing ak 3 for k=|q|. The number of strongly active
modes is thus at most a few timpg L,/ if Req®>0. If
Req?<0, we write(67) as

dk 1
27 (k+Req?)?+(Imq?)?’

P(w)=A(w)f (71)

which implies that the number of active modes is of order
2L, ReqImag/w|q|<|qg|Ly/m, which yields the same esti-

mate as for positive Rg?. At high frequencies|q|~w/v,
implying of order XL, /v major modes, or-0.1f modes for

peak structure in 1D without encountering an instability. In
any event, if such a situation were attainable, it would be
realized only in a very narrow parameter range, whereas split
alpha peaks are seen in several percent of subjects.

B. 2D cortex

It is possible to reduce the 2D discrete summation corre-
sponding to(38) to a single sum, giving

A(w) Im[qg,, coth gy L,/2)]
T gm0
gi=q%+(2mn/L,)?, (73)

the human parameters in Table I. Hence, only a modest num- _ _

ber of modes contribute strongly to observed spectra for typibut it does not appear to be possible to evalua® in

cal EEG frequencies o£50 Hz. In the frequency range of closed form. Even so, the insights obtained in the 1D case
interest, Fig. 2b) implies that the modes of relevance extendabove remain valid. In particular, the continuum limit is

from m=0 to a maximal valuet m,,,,. Figure Zc) shows
spectra calculated using varioos,,,. Rapid convergence is
seen, with just three modem(,,,=1) giving a good approxi-

valid for Imk=2 max{Lx_l,L;l} or, equivalently at higH,
min{L, L }=27r.. Thus, the smallest overall dimension of
the cortex governs the applicability of the 2D continuum

mation up to 30 Hz, in accord with the above estimate. Thdimit, with the 1D continuum limit being approached as this
single global mode gives a reasonable representation of thdimension shrinks to zero, with approximatelyn 2y
spectrum up to the vicinity of the alpha frequency, although=2my,L,/L, terms needing to be retained i, terms
the alpha resonance is sharper and stronger in this approx¢ontribute significantly to the sum oven (without loss of

mation than in the full calculation.

generality, we may assuntg<L,). This is borne out by the
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results in Fig. 8 where rapid convergence is seen to thewithin the beta CT resonance because of the tendency of the
continuum limit for frequencies above about 1 Hz in the casey? locus to move away from the negative real afighere
wherelL,=L,=0.2 m. Likewise, Fig. &) shows that if the the resonances )iet higher frequencies. The separation be-
cortical area is held constant, cases Wifha=L, have spectra tween the alpha subpeaks is also restricted to 1-2 Hz at
closer to the 2D continuum limit than those with very small most, since they must correspond to a relatively small arc of
Ly, which approach the 1D version far,<0.2 m. The 1D  one of the loops in Fig. ®), while a circuit of such a loop
spectrum never differs from the 2D one by more than a faceccurs in only about 10 Hizhe alpha frequengyWe return

tor of 2 in this example. to these issues in Sec. VI.

The number of strongly active modes remains restricted in
2D, with the analog of71) implying that at most a few times V. MODAL EFFECTS ON GREEN FUNCTIONS
|g?|LL,/27 modes contribute strongly. This is confirmed by AND EVOKED POTENTIALS

the results in Fig. @), which show rapid convergence as

M.y iNCreases beyond about 2, where modes in a circular Impulse r(;,‘sptg)nlses of the bral?, In tget formbof evol<_$d
region of radiuam, ., are included, with response potentials, are commonly used to probe cognitive

processes. Connections between prestimulus EEGs and sub-
(m?+n?)P<m ... (74) sequent ERPs are also widely explored, and will be treated in
detail by us elsewhere. In this section, we concentrate on
The number of modes required is greater than in 1D becauseodal effects on the Green functi@(r,w) of the cortico-

of the larger highk weighting in 2D Fourier space. thalamic system, which is closely related to the steady state
If they are weakly damped, resonant modes have evoked potentialSSEBR produced by a sinusoidally varying
) ) input at a frequencyw and distance from the detecting
202 2 (2 _(p ol = 75 electrode. As in Sec. IV we begin with a 1D cortex, for
afe mil o=~ (27Te) Ly L) 5 hich many of the modal expressions can be evaluated in

closed form, then turn to the 2D case.
for integersm andn. This form allows multiple modes with

similark,,, leading to the possibility of multiple resonances A. 1D cortex
at nearby frequencies. However, for these resonances to give . .
rise to distinct peaks in the spectrum, they must not be too 'T one wishes to ev_aluat_e the steady state e\_/okeo! potential
close together, implying thaih andn must be of order unity. a distancex from a sinusoidally modulgted pomt stimulus,
Evidence of such modal structure is seen in the alpha peak n€ Must evaluat&(x, ). For a real sinusoidal perturba-
Fig. 3, where a secondary peak lies at about 11 Hz, on thion: @ linear combination of the real quantitig&(x,w)
flank of the main peak at 10 Hz. The expanded view in Fig.” G(X,—®)1/2 and [G(x,0) = G(X,~)]/2i is actually

3(d) shows this most clearly, demonstrating that this is due tgvhat is relevant. _

the (m,n)=(0,0),(0:+1),(1,0) modes, with little change e discrete 1D analog ¢49) for x,,=0 is[20]

as my,ax increases beyond 1. The reason that the peak is

sfron . - - . Gesl—(w) 1 *° ei277'm)(/L><

ger in this case is simply the larger number of modes G(x,w)= il 2

with the samék| but, as in 1D, a discrete peak is difficult or ’ 1-GjiL(o) Ly m&e [2mre|®
impossible to obtain, except perhaps in a very restricted pa- Ly Fe
rameter regime. It is even more difficult to produce subpeaks (76)
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_ Ged(@) coshiq(Ly—2[x))/2]
1-GjiL(@) 2qr2sinh(qL,/2)

which holds for|x|<L, and can also be written

Ged(w) 1
1-GjiL(w) 2qr2

x{tanh gqL,/2)cosi{gx)—sinh(g|x|)} (78

G(X,w)=

_ Cedlw) 1 {e~ 9+ coshqx)
1-GyL(w) 2qr2 a
X[tanh(qL,/2)—11}. (79

The 1D continuum result is
Ged (w) f dk elkx
G(X,w)= 80
xa) 1-Gjil(w)) 27Te k2r2+ q?(w)r? (80
Gedl(w) e~ -

T1-GiL(w) 2q12°

The discrete expressioV9) rapidly approaches the con-
tinuum limit (81) as Ref|L,) increases beyond about 2. For
smaller values of Re there are resonances at the same lo-
cations in theg? plane as for the spectra discussed in Sec.

V.

Figure 4 shows variations itG(x,f)| as a function of

nents ofG(x,f) weaken and then,,,,=0 form from Fig. 4b)

is approached asincreases, reflecting the rapid damping of
these waves. In contrast, the Idwpart is almost indepen-
dent ofr, reflecting the dominance of the=0 global mode

in this case. Apart from the substructure near the alpha reso-
nance, the continuum limit is found to be a much better
approximation at smalf, which reflects the requisite inclu-
sion of a large number of modes up to at ldastl/r in order

to resolve the spatial scales involved. Figutd)4hows that
the modal Green function also exhibits two subpeaks in the
alpha rhythm. These correspond to the=0 (=10 Hz and
m==1 (=11 Hz resonances and appear stronger than in
the spectra, because only a singlealue is involved: when
sources at various contribute to a spectrum, the large-
contributions, which involve primarily them=0 mode,
dominate the more local ones, which contribute to the sec-
ondary peak.

B. 2D cortex

The continuum limit yields the explicit 2D resuf1), and
the double sum involved in the 2D analog @) can be
reduced to the 1D sum

©

Ged (w) 1 1 .
1-GjL(w) 2riL, n;w EGXF(IZWny/Ly)
X{tanr(Qan/Z)COSf(an)—sink(qn|x|)}, (82)

but (82) does not seem to be able to be evaluated in closed
form. We thus proceed numerically in this section, apart

G(X,w)=

frequencyf asLy, Mpay, andx are varied in a 1D cortex from noting that A.~2Mpal, /L, terms are required in
whose parameters are otherwise those of Table I. In K&). 4 (82) if 2m,,,, terms are significant in the sum over

it is seen that the continuum limit is rapidly approached as

Figure 5 shows variations ifG(x,f)| vs f asL,=L,,

increases, with significant differences only below 1 Hz form,.,, andr=(x,0) are varied in a 2D cortex whose param-
L,=0.5 m where the discrete and continuous versions scaleters are otherwise those of Table I. The conclusions are very

asf~ 1 and f 12

convergence to then,,,=2 limit is seen in Fig. 4b), with

, respectively. Rapid, but nonmonotonic, similar to those for the 1D case seen in Fig. 4. One difference

is that the second alpha subpeak is slightly stronger in 2D, as

Mmax=1 sufficing to obtain excellent agreement up to circaseen in Fig. &), because of the larger number of modes
30 Hz. In Fig. 4c) we see that the high-frequency compo- contributing to it.
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VI. RESONANCE MECHANISMS point of view of parsimony, postulation of a different pace-

A key aim of EEG theories has been to explain the occur-m"’l'la\(er for edachdplealé.ls uncocrllvmcu;]g. ism is that

rence of the major rhythms seen in waking and s,leeping?ﬂ zecohn Wi ely Iscussed mechanism 1s that resonances

states, particularly the alpha=(L0 H2 and beta €20 H2) ay be the result of spatial c_ortlcal eigenmodes, with sub-
structure caused by the breaking of modal degeneracy by the

waking rhythms, and the theta=6 Hz), spindle <14 H2), ’ ) X
and delta €3.5 H2 rhythms most prominent in sleep. The complicated cortical geometfy,8]. In a series of papers, we

recent prediction and tentative detection of additional’@e shown that purely cortical waves appear to be too
rhythms at nominal frequencies of around 25 Hz in sleep an@€avily damped to have sharp resonances and that such reso-
30 Hz waking further extends this tafk]. A comprehensive Nnances are certainly not possible for the cortical part of the
theory should also account for the splitting of the alphamodel discussed here for physiologically realistic parameters
rhythm into two subpeaks, as seen in a few percent of normdlL,5]. Nunez has developed a different model in which there
individuals, and the occurence of Rolandic mu rhythm, anare additional degrees of freedom in choosing the relative
alphalike rhythm most prominent centrally on the head andoefficients in a wave equation analogougté) [7,8]. In his
which also possesses a betalike componé@ijt Several model, itis possible in principle to obtain weakly damped
mechanisms have been proposed, including ones based etanding waves at any frequency, with the actual resonant
modal resonances. We briefly recapitulate these here, includrequencies selected by the cortical geometry. One prediction
ing new ones based on the present work, and outline somaf this model is that the frequencies of the global resonances
experimental tests that can be used to distinguish betweeshould not depend on location in the cortex, although their
them. amplitudes may vary due to differences in overlying tissues,
One mechanism that could account for any number oftc. Under this mechanism, splitting in peaks is predicted to
peaks is that of pacemakers located in the thalamus or elsbe due to breaking of initial degeneracy as a result of geo-
where in the brain, each of which comprises neurons with anetric asymmetries in the real cortex; the globally uniform
characteristic frequency. It is argued that these neurons murode is nondegenerate and cannot be split by this mecha-
tually entrain one another via nonlinear couplings, leading talism. Relative amplitudes of split-band peaks should be
a linewidth less than that of the frequency response curve ddimilar at all locations as long as the splitting is not so large
any single neurofh9]. Although neurons with resonant fre- that the two peaks undergo significantly different spatial fil-
guencies certainly exist, the pacemaker theory has a numbggring, and provided that the eigenmodes have similar spatial
of problems. First, it does not explain why the resonant fre-structure. If the latter proviso is not fulfilled, the higher fre-
guencies are approximately in a harmonic relationship in thejuency mode of an initially degenerate pair will tend to have
waking state, nor why sleep resonances occur almost exactlyigher amplitudes in frontal regions because the posterior
midway between the waking ones. The transition from waklobes of the brain are larger, implying smalletand hence
ing to sleep would involve deactivation of the pacemakersw) is favored in this region. This argument is exactly analo-
for resonances at 2, 4, and 6 times a base frequency @ous to standard textbook ones used to infer the qualitative
around 5 Hz, and activation of those at 1, 3, and 5 times, andpatial structure and frequencies of pairs of initially degen-
this pattern is not explained by the theory. Nor does paceerate quantum mechanical eigenmodes in the presence of a
maker theory account for the strong enhancement of deltperturbing potential that breaks that degeneracy.
waves in sleep or the splitting of the alpha peak seen in some We have previously argued that the major EEG peaks are
subjects(except perhaps via the ad hoc addition of anothedue to resonances in a corticothalamic feedback loop, dem-
pacemaker at the requisite frequencyloreover, from the onstrating that this mechanism can account for the entire
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series of resonances previously seen, their inversion in sleegpond to different spatial eigenmodes. Rolandic mu rhythm
along with simultaneous enhancement of delta, and the odits naturally into this picture as the alpha rhythm corre-
currence of additional resonances near 25 Hz in sleep and ponding to corticothalamic loops in the central part of the
Hz waking[5]. In the present paper, we have shown that thiscortex, particularly involving the sensorimotor cortex which
mechanism can also account for weak substructure in thig known to be involved in m{i9]. This mechanism predicts
alpha peak arising from the effect of purely cortical eigen-that the spatial attenuation of a given spectral peak will result
modes in frequency ranges where damping has been reduckdgely from its intracortical damping and, hence, that
by the CT resonance, particularly if the measuring electrodéharper peakévhich are necessarily weakly dampesthould
is close to a localized source at the frequency involved. Thi$iave more uniform spatial distribution than broader ones.
mechanism predicts that there should be little or no structure Another possibility is that pacemaker cells may operate in
in the beta resonance, because its part ofghdocus is ~ conjunction with cortical or CT resonances, effectively
relatively remote from the resonance poles. It also impliesharpening the resonance beyond what could be achieved by
that there should be an 2 enhancement in the delta range if e|ther mechanism alone. For example, in the CT context, the
the cortex is very near marginal stability. As with the previ- > curve could be distorted toward a nearby pole even by
ous mechanism, this one predicts that neighboring peak&eakly resonant pacemaker effects, producing a significant
should exhibit no spatial variation of resonance frequenue@l’lhaﬂcement in the spectrum without a large absolute
and little variation in relative amplitudes, although absolutechange ing. Such compound mechanisms are quite pos-
amplitudes may change. Again, one would expect the highegible, particularly given that weakly resonant neurons have
frequency mode of a split pair to be predominantly frontalexisted in the thalamus, for example, for millions of years. If
(this does not apply to resonances due to different mode&ny evolutionary advantage accrues to sharp resonances, ad-
such as then=0 andm=1 resonances, since these are non-aptation of these cells to enhance them is likely to have oc-
degenerate to begin with cured, but investigation of such possibilities is beyond the
A second alternative involving CT loops is that cortical Scope of the present work.
eigenmodes may be largely irrelevant to submode structure,
but that there may be two different valuestgfin split-alpha
subjects. In this crude form, this suggestion suffers from
similar objections to the pacemaker id@m the grounds of We have examined the effect of boundary conditions and
being ad hok although eachy, value gives rise to an entire resulting discrete spatial eigenmodes on the predictions of
family of peaks, not just one. However, a bimodal distribu-our corticothalamic model of EEG generation, generalizing it
tion of ty values can arise very naturally and robustly, sincein the process. This work yields equations for modal dynam-
loops from the thalamus to various parts of the cortex andcs, spectra, and the response functions corresponding to
back are not all of the same length, and there will thus be ateady state evoked potentials and evoked response poten-
spread in the value dg=tq(r). In particular, there must be tials. These equations incorporate both modal and corticotha-
at least one maximum and one minimumtgtorresponding lamic resonances, enabling a unified treatment of these po-
to the longest and shortest CT loops, most likely at the frontential resonance mechanisms, contributing to determining
and back of the head or vice versa. If the spatial secontheir relative effects on observations, and laying the ground-
derivatives ofty are increasing in magnitude at these extre-work for future nonlinear EEG studies.
mums, it is straightforward to show that there will be an  Our results for modal effects on white noise-driven spec-
enhanced probability of observing these valuegypfelative  tra showed that, for human parameters, the continuum limit
to nearby values, with a reduced probability in the opposit€no modal effectsis an excellent approximation at most fre-
case. In the first case, if the maximum and minimighwval-  quencies for systems of linear cortical sizes exceeding
ues differ sufficiently they may give rise to distinguishableroughly 0.2 m, which is well fulfilled for humand.(~0.5
peaks in the spectrum. A key observable consequence of thim). The exceptions are at very low frequencidss(l Hz)
mechanism would be that all CT resonances would be exand near the alpha resonance. At Ibim a marginally stable
pected to be affected in the same way, including the betgystem, the uniform mode produces a spectral enhancement,
rhythm in particular. This contrasts with the cortical sub-with P(f)~f 2, rather than the continuum behavibr*.
mode mechanism which would affect the alpha peak preferNear the alpha frequency, some substructure may be seen if
entially and would lead to differerfand probably unobserv- the resonance is strong, but distinct subpeaks were not found
ably weall submode structure within other CT resonancesfor parameters near the physiologically realistic ones. The
One would also expect systematic shifts in the resonant fresubstructure seen is due almost entirely to the effects of the
quencies and relative amplitudes of alpha subpeaks acrogtobal mode and the modes nearest to it in Fourier space.
the scalp, although each value tgfwould be observable at It was further found that the modal spectrum was repro-
an attenuated level over much of the scalp because of theuced semiquantitatively up to the vicinity of the alpha fre-
spread of corticocortical fibers arising from each point. Un-quency by the contribution from the global mode alone, al-
der this mechanism the power spectrum is due to a superpthough the alpha peak was somewhat narrower and more
sition of the effects of various values ¢f, and at low to  pronounced in this approximation. Inclusion of further
moderate frequencies all peaks are dominated by the renodes led to rapid convergence toward the limiting result.
sponse of the global mode in the presence of the overall Green functionsG(r,w) were calculated in Sec. V, in-
feedback via the thalamus—peaks do not generally correcluding modal and corticothalamic effects. There it was ar-

VIl. SUMMARY AND DISCUSSION
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gued that these functions represent steady state potentigisoduce the major rhythms, and a distribution of CT delays
evoked by sinusoidal stimuliSSEP§ while their Fourier ty to produce substructure in these resonances. This mecha-
transformsG(r,t) represent responses evoked by impulsivenism predicts correlated substructure in both the alpha and
stimuli (ERPS. Our results again showed that modal effectsbeta peaks, accounts for relative frequencies of peaks, and
were most prominent at very low frequencies and near theleep—wake differences. It also predicts a inverse relation-
alpha peak, especially close to a localized source. In otheship between peak sharpness and spatial attenuation.
respects, the continuum approximation is best at short Overall, we thus conclude that the effects of spatial cor-
ranges, where many modes must be included to resolve theal eigenmodes are relatively weak for physiologically re-
spatial scales involved, while the global-mode approximatioralistic parameters, except perhaps in very narrow parameter
is best at large scales. regimes. In any event, they only appear to be significant in
Several possible mechanisms for the production of majofrequency ranges in which corticothalamic resonances have
EEG resonances, substructure within them, and relatedeakened the wave dissipation to the point that spatial eigen-
rhythms such as Rolandic mu, were critically discussed irmodes are weakly damped. The most robust signatures of
Sec. VI, and experimentally testable predictions were listetortical modes are expected to be the? enhancement at
for each. It was argued that pacemaker mechanisms hawery low frequencies in marginally stable systems, and pos-
trouble in accounting convincingly for the relative frequen-sible substructure in the alpha peak with specific spatial
cies of major rhythms, and sleep—wake variations. Purelyproperties that contrast with those expected from other
cortical resonances have difficulty avoiding strong dampingnechanisms. From the perspective of numerical modeling,
for physiologically realistic parameters, and we argue thatve conclude that convolutions and other cortical irregulari-
they predict higher frequencies for frontally concentratedties and detailed boundary conditions are not very important
members of modal pairs whose degeneracy has been brokendetermining the form of the spectrum under most circum-
by geometric irregularities. Corticothalamic resonances castances.
weaken damping sufficiently for cortical eigenmode struc-
ture to become s_lgnlf_lcant near major r_hyt_hms, primarily the ACKNOWLEDGMENT
alpha peak; again, highérmembers of initially degenerate
pairs should be frontally concentrated. The most promising The authors thank J.J. Wright for his constructive com-
mechanism overall relies on corticothalamic resonances tments on the paper.
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